Skip to main content
Log in

Effects of Mutations Within Surface-Exposed Loops in the Pore-Forming Domain of the Cry9Ca Insecticidal Toxin of Bacillus thuringiensis

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The pore-forming domain of Bacillus thuringiensis insecticidal Cry toxins is formed of seven amphipathic α-helices. Because pore formation is thought to involve conformational changes within this domain, the possible role of its interhelical loops in this crucial step was investigated with Cry9Ca double mutants, which all share the previously characterized R164A mutation, using a combination of homology modeling, bioassays and electrophysiological measurements. The mutations either introduced, neutralized or reversed an electrical charge carried by a single residue of one of the domain I loops. The ability of the 28 Cry9Ca double mutants to depolarize the apical membrane of freshly isolated Manduca sexta larval midguts was tested in the presence of either midgut juice or a cocktail of protease inhibitors because these conditions had been shown earlier to greatly enhance pore formation by Cry9Ca and its R164A single-site mutant. Most mutants retained toxicity toward neonate larvae and a pore-forming ability in the electrophysiological assay, which were comparable to those of their parental toxin. In contrast, mutants F130D, L186D and V189D were very poorly toxic and practically inactive in vitro. On the other hand, mutant E129A depolarized the midgut membrane efficiently despite a considerably reduced toxicity, and mutant Q192E displayed a reduced depolarizing ability while conserving a near wild-type toxicity. These results suggest that the conditions found in the insect midgut, including high ionic strength, contribute to minimizing the influence of surface charges on the ability of Cry9Ca and probably other B. thuringiensis toxins to form pores within their target membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcantara EP, Alzate O, Lee MK, Curtiss A, Dean DH (2001) Role of α-helix seven of Bacillus thuringiensis Cry1Ab δ-endotoxin in membrane insertion, structural stability, and ion channel activity. Biochemistry 40:2540–2547

    Article  CAS  PubMed  Google Scholar 

  • Angsuthanasombat C, Uawithya P, Leetachewa S, Pornwiroon W, Ounjai P, Kerdcharoen T, Katzenmeier G, Panyim S (2004) Bacillus thuringiensis Cry4A and Cry4B mosquito-larvicidal proteins: homology-based 3D model and implications for toxin activity. J Biochem Mol Biol 37:304–313

    CAS  PubMed  Google Scholar 

  • Aronson AI, Shai Y (2001) Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiol Lett 195:1–8

    Article  CAS  PubMed  Google Scholar 

  • Boonserm P, Davis P, Ellar DJ, Li J (2005) Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J Mol Biol 348:363–382

    Article  CAS  PubMed  Google Scholar 

  • Boonserm P, Mo M, Angsuthanasombat C, Lescar J (2006) Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. J Bacteriol 188:3391–3401

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  PubMed  Google Scholar 

  • Brunet J-F, Vachon V, Juteau M, Van Rie J, Larouche G, Vincent C, Schwartz J-L, Laprade R (2010a) Pore-forming properties of the Bacillus thuringiensis toxin Cry9Ca in Manduca sexta brush border membrane vesicles. Biochim Biophys Acta 1798:1111–1118

    Article  CAS  PubMed  Google Scholar 

  • Brunet J-F, Vachon V, Marsolais M, Van Rie J, Schwartz J-L, Laprade R (2010b) Midgut juice components affect pore formation by the Bacillus thuringiensis insecticidal toxin Cry9Ca. J Invertebr Pathol 104:203–208

    Article  CAS  PubMed  Google Scholar 

  • Chen XJ, Curtiss A, Alcantara E, Dean DH (1995) Mutations in domain I of Bacillus thuringiensis δ-endotoxin Cry1Ab reduce the irreversible binding of toxin to Manduca sexta brush border membrane vesicles. J Biol Chem 270:6412–6419

    Article  CAS  PubMed  Google Scholar 

  • Coux F, Vachon V, Rang C, Moozar K, Masson L, Royer M, Bes M, Rivest S, Brousseau R, Schwartz J-L, Laprade R, Frutos R (2001) Role of interdomain salt bridges in the pore-forming ability of the Bacillus thuringiensis toxins of Cry1Aa and Cry1Ac. J Biol Chem 276:35546–35551

    Article  CAS  PubMed  Google Scholar 

  • de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37:409–433

    Article  PubMed  Google Scholar 

  • Dow JAT (1984) Extremely high pH in biological systems: a model for carbonate transport. Am J Physiol Regul Integr Comp Physiol 246:R633–R635

    CAS  Google Scholar 

  • Dow JAT (1992) pH gradients in lepidopteran midgut. J Exp Biol 172:355–375

    CAS  PubMed  Google Scholar 

  • Fernández LE, Pérez C, Segovia L, Rodríguez MH, Gill SS, Bravo A, Soberón M (2005) Cry11Aa toxin from Bacillus thuringiensis binds its receptor in Aedes aegypti mosquito larvae through loop α-8 of domain II. FEBS Lett 579:3508–3514

    Article  PubMed  Google Scholar 

  • Fortier M, Vachon V, Kirouac M, Schwartz J-L, Laprade R (2005) Differential effects of ionic strength, divalent cations and pH on the pore-forming activity of Bacillus thuringiensis insecticidal toxins. J Membr Biol 208:77–87

    Article  CAS  PubMed  Google Scholar 

  • Fortier M, Vachon V, Frutos R, Schwartz J-L, Laprade R (2007) Effect of insect larval midgut proteases on the activity of Bacillus thuringiensis Cry toxins. Appl Environ Microbiol 73:6208–6213

    Article  CAS  PubMed  Google Scholar 

  • Galitsky N, Cody V, Wojtczak A, Ghosh D, Luft JR, Pangborn W, English L (2001) Structure of the insecticidal bacterial δ-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr D Biol Crystallogr 57:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Gazit E, La Rocca P, Sansom MSP, Shai Y (1998) The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis δ-endotoxin are consistent with an “umbrella-like” structure of the pore. Proc Natl Acad Sci USA 95:12289–12294

    Article  CAS  PubMed  Google Scholar 

  • Gerber D, Shai Y (2000) Insertion and organization within membranes of the δ-endotoxin pore-forming domain, helix 4-loop–helix 5, and inhibition of its activity by a mutant helix 4 peptide. J Biol Chem 275:23602–23607

    Article  CAS  PubMed  Google Scholar 

  • Girard F, Vachon V, Lebel G, Préfontaine G, Schwartz J-L, Masson L, Laprade R (2009) Chemical modification of Bacillus thuringiensis Cry1Aa toxin single-cysteine mutants reveals the importance of domain I structural elements in the mechanism of pore formation. Biochim Biophys Acta 1788:575–580

    Article  CAS  PubMed  Google Scholar 

  • Gómez I, Pardo-López L, Muños-Garay C, Fernandez LE, Pérez C, Sánchez J, Soberón M, Bravo A (2007) Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides 28:169–173

    Article  PubMed  Google Scholar 

  • Griffitts JS, Aroian RV (2005) Many roads to resistance: how invertebrates adapt to Bt toxins. Bioessays 27:614–624

    Article  PubMed  Google Scholar 

  • Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz J-L, Brousseau R, Cygler M (1995) Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol 254:447–464

    Article  CAS  PubMed  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Ye S, Liu Y, Wei L, Xue J, Wu H, Song F, Zhang J, Wu X, Huang D, Rao Z (2009) Crystal structure of Bacillus thuringiensis Cry8Ea1: an insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. J Struct Biol 168:259–266

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez P, Alzate O, Orduz S (2001) A theoretical model of the tridimensional structure of Bacillus thuringiensis subsp. medellin Cry11Bb toxin deduced by homology modelling. Mem Inst Oswaldo Cruz 96:357–364

    CAS  PubMed  Google Scholar 

  • Ho SN, Hunt HD, Horton RM, Pullen JK, Pease RL (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59

    Article  CAS  PubMed  Google Scholar 

  • Kanintronkul Y, Sramala I, Katzenmeir G, Panyim S, Angsuthanasombat C (2003) Specific mutations within the α4–α5 loop of the Bacillus thuringiensis Cry4B toxin reveal a crucial role for Asn-166 and Tyr-170. Mol Biotechnol 24:11–19

    Article  CAS  PubMed  Google Scholar 

  • Kumar ASM, Aronson AI (1999) Analysis of mutations in the pore-forming region essential for insecticidal activity of a Bacillus thuringiensis δ-endotoxin. J Bacteriol 181:6103–6107

    CAS  PubMed  Google Scholar 

  • Lambert B, Buysse L, Decock C, Jansens S, Piens C, Saey B, Seurinck J, Van Audenhove K, Van Rie J, Van Vliet A, Peferoen M (1996) A Bacillus thuringiensis insecticidal crystal protein with a high activity against members of the family Noctuidae. Appl Environ Microbiol 62:80–86

    CAS  PubMed  Google Scholar 

  • Lebel G, Vachon V, Préfontaine G, Girard F, Masson L, Juteau M, Bah A, Larouche G, Vincent C, Laprade R, Schwartz J-L (2009) Mutations in domain I interhelical loops affect the rate of pore formation by the Bacillus thuringiensis Cry1Aa toxin in insect midgut brush border membrane vesicles. Appl Environ Microbiol 75:3842–3850

    Article  CAS  PubMed  Google Scholar 

  • Li J, Carroll J, Ellar DJ (1991) Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 353:815–821

    Article  CAS  PubMed  Google Scholar 

  • Li J, Derbyshire DJ, Promdonkoy B, Ellar DJ (2001) Structural implications for the transformation of the Bacillus thuringiensis δ-endotoxins from water-soluble to membrane-inserted forms. Biochem Soc Trans 29:571–577

    Article  CAS  PubMed  Google Scholar 

  • Likitvivatanavong S, Aimanova KG, Gill SS (2009) Loop residues of the receptor binding domain of Bacillus thuringiensis Cry11Ba toxin are important for mosquitocidal activity. FEBS Lett 583:2021–2030

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Fang G, Cai F (2008) The insecticidal crystal protein Cry2Ab10 from Bacillus thuringiensis: cloning, expression, and structure simulation. Biotechnol Lett 30:513–519

    Article  CAS  PubMed  Google Scholar 

  • Masson L, Préfontaine G, Péloquin L, Lau PCK, Brousseau R (1990) Comparative analysis of the individual protoxin components in P1 crystals of Bacillus thuringiensis subsp. kurstaki isolates NRD-12 and HD-1. Biochem J 269:507–512

    CAS  PubMed  Google Scholar 

  • Masson L, Mazza A, Gringorten L, Baines D, Aneliunas V, Brousseau R (1994) Specificity domain localization of Bacillus thuringiensis insecticidal toxins is highly dependent on the bioassay system. Mol Microbiol 14:851–860

    Article  CAS  PubMed  Google Scholar 

  • Morse RJ, Yamamoto T, Stroud RM (2001) Structure of Cry2Aa suggests an unexpected binding epitope. Structure 9:409–417

    Article  CAS  PubMed  Google Scholar 

  • Nuñez-Valdez M-E, Sánchez J, Lina L, Güereca L, Bravo A (2001) Structural and functional studies of α-helix 5 region from Bacillus thuringiensis Cry1Ab δ-endotoxin. Biochim Biophys Acta 1546:122–131

    PubMed  Google Scholar 

  • Ohba M, Mizuki E, Uemori A (2009) Parasporin, a new anticancer protein group from Bacillus thuringiensis. Anticancer Res 29:427–434

    CAS  PubMed  Google Scholar 

  • Peitsch MC (1995) Protein modeling by e-mail. Bio/Technol 13:658–660

    Article  CAS  Google Scholar 

  • Peitsch MC (1996) ProMod and Swiss-Model: internet-based tools for automated comparative protein modelling. Biochem Soc Trans 24:274–279

    CAS  PubMed  Google Scholar 

  • Peyronnet O, Vachon V, Brousseau R, Baines D, Schwartz J-L, Laprade R (1997) Effect of Bacillus thuringiensis toxins on the membrane potential of lepidopteran insect midgut cells. Appl Environ Microbiol 63:1679–1684

    CAS  PubMed  Google Scholar 

  • Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 71:255–281

    Article  CAS  PubMed  Google Scholar 

  • Pornwiroon W, Katzenmeier G, Panyim S, Angsuthanasombat C (2004) Aromaticity of Tyr-202 in the α4–α5 loop is essential for toxicity of the Bacillus thuringiensis Cry4A toxin. J Biochem Mol Biol 37:292–297

    CAS  PubMed  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  PubMed  Google Scholar 

  • Schwartz J-L, Juteau M, Grochulski P, Cygler M, Préfontaine G, Brousseau R, Masson L (1997) Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS Lett 410:397–402

    Article  CAS  PubMed  Google Scholar 

  • Wei J-Z, Hale K, Carta L, Platzer E, Wong C, Fang S-C, Aroian RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci USA 100:2760–2765

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Aronson AI (1992) Localized mutagenesis defines regions of the Bacillus thuringiensis δ-endotoxin involved in toxicity and specificity. J Biol Chem 267:2311–2317

    CAS  PubMed  Google Scholar 

  • Xia L-Q, Zhao X-M, Ding X-Z, Wang F-X, Sun Y-J (2008) The theoretical 3D structure of Bacillus thuringiensis Cry5Ba. J Mol Model 14:843–848

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Sahara K, Bando H, Asano S (2008) Discovery of a novel Bacillus thuringiensis Cry8D protein and the unique toxicity of the Cry8D-class proteins against scarab beetles. J Invertebr Pathol 99:257–262

    Article  CAS  PubMed  Google Scholar 

  • Zhao X-M, Xia L-Q, Ding X-Z, Wang F-X (2009) The theoretical three-dimensional structure of Bacillus thuringiensis Cry5Aa and its biological implications. Protein J 28:104–110

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada, the Fonds québécois de la recherche sur la nature et les technologies (FQRNT) and Valorisation-Recherche Québec. J.-F. B. received a graduate student scholarship from the FQRNT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Frédéric Brunet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunet, JF., Vachon, V., Marsolais, M. et al. Effects of Mutations Within Surface-Exposed Loops in the Pore-Forming Domain of the Cry9Ca Insecticidal Toxin of Bacillus thuringiensis . J Membrane Biol 238, 21–31 (2010). https://doi.org/10.1007/s00232-010-9315-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9315-9

Keywords

Navigation