Skip to main content
Log in

Peptide Pheromone Plantaricin A Produced by Lactobacillus plantarum Permeabilizes Liver and Kidney Cells

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Certain antimicrobial peptides from multicellular animals kill a variety of tumor cells at concentrations not affecting normal eukaryotic cells. Recently, it was reported that also plantaricin A (PlnA), which is a peptide pheromone with strain-specific antibacterial activity produced by Lactobacillus plantarum, permeabilizes cancerous rat pituitary cells (GH4 cells), whereas normal rat anterior pituitary cells are resistant to the peptide. To examine whether the preferential permeabilization of cancerous cells is a general feature of PlnA, we studied its effect on primary cultures of cells from rat liver (hepatocytes, endothelial, and Kupffer cells) and rat kidney cortex, as well as two epithelial cell lines of primate kidney origin (Vero cells from green monkey and human Caki-2 cells). The Vero cell line is derived from normal cells, whereas the Caki-2 cell line is derived from a cancerous tumor. The membrane effects were studied by patch clamp recordings and microfluorometric (fura-2) monitoring of the cytosolic concentrations of Ca2+ ([Ca2+]i) and fluorophore. In all the tested cell types except Kupffer cells, exposure to 10–100 μM PlnA induced a nearly instant permeabilization of the membrane, indicated by the following criteria: increased membrane conductance, membrane depolarization, increased [Ca2+]i, and diffusional loss of fluorophore from the cytosol. At a concentration of 5 μM, PlnA had no effect on any of the cell types. The Kupffer cells were permeabilized by 500 μM PlnA. We conclude that the permeabilizing effect of PlnA is not restricted to cancerous cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderssen EL, Diep DB, Nes IF, Eijsink VG, Nissen-Meyer J (1998) Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ Microbiol 64:2269–2272

    CAS  PubMed  Google Scholar 

  • Balasubramanian K, Schroit AJ (2003) Aminophospholipid asymmetry: a matter of life and death. Annu Rev Physiol 65:701–734

    Article  CAS  PubMed  Google Scholar 

  • Blomhoff R, Smedsrød B, Eskild W, Granum PE, Berg T (1984) Preparation of isolated liver endothelial cells and Kupffer cells in high yield by means of an enterotoxin. Exp Cell Res 150:194–204

    Article  CAS  PubMed  Google Scholar 

  • Castano S, Desbat B, Delfour A, Dumas JM, da Silva A, Dufourcq J (2005) Study of structure and orientation of mesentericin Y105, a bacteriocin from gram-positive Leuconostoc mesenteroides, and its Trp-substituted analogues in phospholipid environments. Biochim Biophys Acta 1668:87–98

    Article  CAS  PubMed  Google Scholar 

  • Chen HM, Wang W, Smith D, Chan SC (1997) Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim Biophys Acta 1336:171–179

    CAS  PubMed  Google Scholar 

  • Chen HM, Leung KW, Thakur NN, Tan A, Jack RW (2003) Distinguishing between different pathways of bilayer disruption by the related antimicrobial peptides cecropin B, B1 and B3. Eur J Biochem 270:911–920

    Article  CAS  PubMed  Google Scholar 

  • Cruciani RA, Barker JL, Zasloff M, Chen HC, Colamonici O (1991) Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci USA 88:3792–3796

    Article  CAS  PubMed  Google Scholar 

  • Diep DB, Havarstein LS, Nissen-Meyer J, Nes IF (1994) The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system. Appl Environ Microbiol 60:160–166

    CAS  PubMed  Google Scholar 

  • Diep DB, Havarstein LS, Nes IF (1995) A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol 18:631–639

    Article  CAS  PubMed  Google Scholar 

  • Fimland G, Johnsen L, Dalhus B, Nissen-Meyer J (2005) Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J Pept Sci 11:688–696

    Article  CAS  PubMed  Google Scholar 

  • Fogh J, Fogh JM, Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 58:209–214

    CAS  PubMed  Google Scholar 

  • Hafting T, Haug TM, Ellefsen S, Sand O (2006) Hypotonic stress activates BK channels in clonal kidney cells via purinergic receptors, presumably of the P2Y1 subtype. Acta Physiol 188:21–31

    Article  CAS  Google Scholar 

  • Hamill O, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323

    CAS  PubMed  Google Scholar 

  • Hauge HH, Mantzilas D, Moll GN, Konings WN, Driessen AJ, Eijsink VG, Nissen-Meyer J (1998) Plantaricin A is an amphiphilic alpha-helical bacteriocin-like pheromone which exerts antimicrobial and pheromone activities through different mechanisms. Biochemistry 37:16026–16032

    Article  CAS  PubMed  Google Scholar 

  • Jacob L, Zasloff M (1994) Potential therapeutic applications of magainins and other antimicrobial agents of animal origin. Ciba Found Symp 186:197–216

    CAS  PubMed  Google Scholar 

  • Kristiansen PE, Fimland G, Mantzilas D, Nissen-Meyer J (2005) Structure and mode of action of the membrane-permeabilizing antimicrobial peptide pheromone plantaricin A. J Biol Chem 280:22945–22950

    Article  CAS  PubMed  Google Scholar 

  • Lehrer RI, Lichtenstein AK, Ganz T (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 11:105–128

    Article  CAS  PubMed  Google Scholar 

  • Leuschner C, Hansel W (2004) Membrane disrupting lytic peptides for cancer treatments. Curr Pharm Des 10:2299–2310

    Article  CAS  PubMed  Google Scholar 

  • Lichtenstein A (1991) Mechanism of mammalian cell lysis mediated by peptide defensins. Evidence for an initial alteration of the plasma membrane. J Clin Invest 88:93–100

    Article  CAS  PubMed  Google Scholar 

  • Liebhaber H, Riordan JT, Horstmann DM (1967) Replication of rubella virus in a continuous line of African green monkey kidney cells (Vero). Proc Soc Exp Biol Med 125:636–643

    CAS  PubMed  Google Scholar 

  • Matsuzaki K (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1376:391–400

    CAS  PubMed  Google Scholar 

  • Matsuzaki K (1999) Why and how are peptide–lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462:1–10

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Sugishita K, Fujii N, Miyajima K (1995) Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34:3423–3429

    Article  CAS  PubMed  Google Scholar 

  • Nissen-Meyer J, Nes IF (1997) Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch Microbiol 167:67–77

    Article  CAS  Google Scholar 

  • Oren Z, Shai Y (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47:451–463

    Article  CAS  PubMed  Google Scholar 

  • Rao LV, Tait JF, Hoang AD (1992) Binding of annexin V to a human ovarian carcinoma cell line (OC-2008). Contrasting effects on cell surface factor VIIa/tissue factor activity and prothrombinase activity. Thromb Res 67:517–531

    Article  CAS  PubMed  Google Scholar 

  • Sablon E, Contreras B, Vandamme E (2000) Antimicrobial peptides of lactic acid bacteria: mode of action, genetics and biosynthesis. Adv Biochem Eng Biotechnol 68:21–60

    CAS  PubMed  Google Scholar 

  • Sand SL, Haug TM, Nissen-Meyer J, Sand O (2007) The bacterial peptide pheromone plantaricin A permeabilizes cancerous, but not normal, rat pituitary cells and differentiates between the outer and inner membrane leaflet. J Membr Biol 216:61–71

    Article  CAS  PubMed  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane–lytic peptides. Biochim Biophys Acta 1462:55–70

    Article  CAS  PubMed  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  CAS  PubMed  Google Scholar 

  • Sugimura M, Donato R, Kakkar VV, Scully MF (1994) Annexin V as a probe of the contribution of anionic phospholipids to the procoagulant activity of tumour cell surfaces. Blood Coagul Fibrinolysis 5:365–373

    CAS  PubMed  Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55:4–30

    Article  CAS  PubMed  Google Scholar 

  • Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ (1991) Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res 51:3062–3066

    CAS  PubMed  Google Scholar 

  • Williamson P, Schlegel RA (1994) Back and forth: the regulation and function of transbilayer phospholipid movement in eukaryotic cells. Mol Membr Biol 11:199–216

    Article  CAS  PubMed  Google Scholar 

  • Ye JS, Zheng XJ, Leung KW, Chen HM, Sheu FS (2004) Induction of transient ion channel-like pores in a cancer cell by antibiotic peptide. J Biochem 136:255–259

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453

    Article  CAS  PubMed  Google Scholar 

  • Zelezetsky I, Pacor S, Pag U, Papo N, Shai Y, Sahl HG, Tossi A (2005) Controlled alteration of the shape and conformational stability of alpha-helical cell–lytic peptides: effect on mode of action and cell specificity. Biochem J 390:177–188

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Sood R, Jutila A, Bose S, Fimland G, Nissen-Meyer J, Kinnunen PK (2006) Interaction of the antimicrobial peptide pheromone plantaricin A with model membranes: implications for a novel mechanism of action. Biochim Biophys Acta 1758:1461–1474

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Norwegian Research Council. We thank Jon Nissen-Meyer for providing the PlnA and Seyed Ali Mousavi for help in preparing the primary cultures of liver cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trude M. Haug.

Additional information

Kristin Andersland and Guro F. Jølle contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersland, K., Jølle, G.F., Sand, O. et al. Peptide Pheromone Plantaricin A Produced by Lactobacillus plantarum Permeabilizes Liver and Kidney Cells. J Membrane Biol 235, 121–129 (2010). https://doi.org/10.1007/s00232-010-9263-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9263-4

Keywords

Navigation