Skip to main content
Log in

Role of Collecting Duct Urea Transporters in the Kidney – Insights from Mouse Models

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Urea movement across plasma membranes is modulated by specialized urea transporter proteins. These proteins are proposed to play key roles in the urinary concentrating mechanism and fluid homeostasis. To date, two urea-transporter genes have been cloned; UT-A (Slc14a2), encoding at least five proteins and UT-B (Slc14a1) encoding a single protein isoform. Recently we engineered mice that lack the inner medullary collecting duct (IMCD) urea transporters, UT-A1 and UT-A3 (UT-A1/3 −/− mice). This article includes 1) a historical review of the role of renal urea transporters in renal function; 2) a review of our studies utilizing the UT-A1/3 −/− mice; 3) description of an additional line of transgenic mice in which beta-galactosidase expression is driven by the alpha-promoter of the UT-A gene, which is allowing better physiological definition of control mechanisms for UT-A expression; and 4) a discussion of the implications of the studies in transgenic mice for the teaching of kidney physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Atherton J.C., Hai M.A., Thomas S. 1968. Effects of water diuresis and osmotic (mannitol) diuresis on urinary solute excretion by the conscious rat. J. Physiol. 197:395–410

    PubMed  CAS  Google Scholar 

  • Bagnasco S.M., Peng T., Nakayama Y., Sands J.M. 2000. Differential expression of individual UT-A urea transporter isoforms in rat kidney. J. Am. Soc. Nephrol. 11:1980–1986

    PubMed  CAS  Google Scholar 

  • Bankir L., Ahloulay M., Bouby N., Trinh-Trang-Tan M.M., Machet F., Lacour B., Jungers P. 1993. Is the process of urinary urea concentration responsible for a high glomerular filtration rate? J. Am. Soc. Nephrol. 4:1091–1103

    PubMed  CAS  Google Scholar 

  • Bankir L., Bouby N., Trinh-Trang-Tan M.M. 1991. Vasopressin-dependent kidney hypertrophy: role of urinary concentration in protein-induced hypertrophy and in the progression of chronic renal failure. Am. J. Kidney Dis. 17:661–665

    PubMed  CAS  Google Scholar 

  • Bankir L., Chen K., Yang B. 2004. Lack of UT-B in vasa recta and red blood cells prevents urea-induced improvement of urinary concentrating ability. Am. J. Physiol. 286:F144–F151

    CAS  Google Scholar 

  • Berger S., Bleich M., Schmid W., Cole T.J., Peters J., Watanabe H., Kriz W., Warth R., Greger R., Schutz G. 1998. Mineralocorticoid receptor knockout mice: pathophysiology of Na+ metabolism. Proc. Natl. Acad. Sci. USA 95:9424–9429

    Article  PubMed  CAS  Google Scholar 

  • Berliner R.W., Bennett C.M. 1967. Concentration of urine in the mammalian kidney. Am. J. Med. 42:777–789

    Article  PubMed  CAS  Google Scholar 

  • Berliner R.W., Levinsky N.G., Davidson D.G., Eden M. 1958. Dilution and concentration of the urine and the action of antidiuretic hormone. Am. J. Med. 24:730–744

    Article  PubMed  CAS  Google Scholar 

  • Chou C.L., Knepper M.A. 1989. Inhibition of urea transport in inner medullary collecting duct by phloretin and urea analogues. Am. J. Physiol. 257:F359–F365

    PubMed  CAS  Google Scholar 

  • Chou C.L., Sands J.M., Nonoguchi H., Knepper M.A. 1990a. Concentration dependence of urea and thiourea transport in rat inner medullary collecting duct. Am. J. Physiol. 258:F486–F494

    CAS  Google Scholar 

  • Chou C.L., Sands J.M., Nonoguchi H., Knepper M.A. 1990b. Urea gradient-associated fluid absorption with sigma urea = 1 in rat terminal collecting duct. Am. J. Physiol. 258:F1173–F1180

    CAS  Google Scholar 

  • Clapp J.R. 1965. Urea reabsorption by the proximal tubule of the dog. Proc. Soc. Exp. Biol. Med. 120:521–523

    PubMed  CAS  Google Scholar 

  • Clapp J.R. 1966. Renal tubular reabsorption of urea in normal and protein-depleted rats. Am. J. Physiol. 210:1304–1308

    PubMed  CAS  Google Scholar 

  • Dicker S.E. 1949. Effect of the protein content of the diet on the glomerular filtration rate of young and adult rats. J. Physiol. 108:197–202

    PubMed  CAS  Google Scholar 

  • DiGiovanni S.R., Nielsen S., Christensen E.I., Knepper M.A. 1994. Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc. Natl. Acad. Sci. USA 91:8984–8988

    Article  PubMed  CAS  Google Scholar 

  • Ecelbarger C.A., Terris J., Frindt G., Echevarria M., Marples D., Nielsen S., Knepper M.A. 1995. Aquaporin-3 water channel localization and regulation in rat kidney. Am. J. Physiol. 269:F663–672

    PubMed  CAS  Google Scholar 

  • Fenton R.A., Chou C.L., Ageloff S., Brandt W., Stokes J.B., Knepper M.A. 2003. Increased collecting duct urea transporter expression in Dahl salt- sensitive rats. Am. J. Physiol. 285:F143–F151

    CAS  Google Scholar 

  • Fenton R.A., Chou C.L., Stewart G.S., Smith C.P., Knepper M.A. 2004. Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct. Proc. Natl. Acad. Sci. USA 101:7469–7474

    Article  PubMed  CAS  Google Scholar 

  • Fenton R.A., Cooper G.J., Morris I.D., Smith C.P. 2002a. Coordinated expression of UT-A and UT-B urea transporters in rat testis. Am. J. Physiol. 282:C1492–C1501

    CAS  Google Scholar 

  • Fenton R.A., Cottingham C.A., Stewart G.S., Howorth A., Hewitt J.A., Smith C.P. 2002b. Structure and characterization of the mouse UT-A gene (Slc14a2). Am. J. Physiol. 282:F630–F638

    CAS  Google Scholar 

  • Fenton R.A., Flynn A., Shodeinde A., Smith C.P., Schnermann J., Knepper M.A. 2005. Renal phenotype of UT-A urea transporter knockout mice. J. Am. Soc. Nephrol. 16:1583–1592

    Article  PubMed  CAS  Google Scholar 

  • Fenton R.A., Howorth A., Cooper G.J., Meccariello R., Morris I.D., Smith C.P. 2000. Molecular characterization of a novel UT-A urea transporter isoform (UT- A5) in testis. Am. J. Physiol. 279:C1425–C1431

    CAS  Google Scholar 

  • Fenton R.A., Shodeinde A., Knepper M.A. 2006. UT-A urea transporter promoter, UT-Aα, targets principal cells of the renal inner medullary collecting duct. Am. J. Physiol. 290:F188–F195

    CAS  Google Scholar 

  • Fenton R.A., Stewart G.S., Carpenter B., Howorth A., Potter E.A., Cooper G.J., Smith C.P. 2002c. Characterization of mouse urea transporters UT-A1 and UT-A2. Am. J. Physiol. 283:F817–F825

    CAS  Google Scholar 

  • Gamble J.L., McKhann C.F., Butler A.M., Tuthill E. 1934. An economy of water in renal function referable to urea. Am. J. Physiol. 109:139–154

    CAS  Google Scholar 

  • Gamble J.L., Putnam M.C., McKhann C.F. 1929. The optimal water requirement in renal function. Am. J. Physiol. 88:571–580

    CAS  Google Scholar 

  • Grantham J.J., Burg M.B. 1966. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am. J. Physiol. 211:255–259

    PubMed  CAS  Google Scholar 

  • Hummler E., Barker P., Talbot C., Wang Q., Verdumo C., Grubb B., Gatzy J., Burnier M., Horisberger J.D., Beermann F., Boucher R., Rossier B.C. 1997. A mouse model for the renal salt-wasting syndrome pseudohypoaldosteronism. Proc. Natl. Acad. Sci. USA 94:1710–1715

    Article  Google Scholar 

  • Imai M., Kokko J.P. 1974. Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. J. Clin. Invest. 53:393–402

    PubMed  CAS  Google Scholar 

  • Jamison R.L., Bennett C.M., Berliner R.W. 1967. Countercurrent multiplication by the thin loops of Henle. Am. J. Physiol. 212:357–366

    PubMed  CAS  Google Scholar 

  • Karakashian A., Timmer R.T., Klein J.D., Gunn R.B., Sands J.M., Bagnasco S.M. 1999. Cloning and characterization of two new isoforms of the rat kidney urea transporter: UT-A3 and UT-A4. J. Am. Soc. Nephrol. 10:230–237

    PubMed  CAS  Google Scholar 

  • Kato A., Sands J.M. 1998. Evidence for sodium-dependent active urea secretion in the deepest subsegment of the rat inner medullary collecting duct. J. Clin. Invest. 101:423–428

    PubMed  CAS  Google Scholar 

  • Kato A., Sands J.M. 1999. Urea transport processes are induced in rat IMCD subsegments when urine concentrating ability is reduced. Am. J. Physiol. 276:F62–71

    PubMed  CAS  Google Scholar 

  • Kawamura S., Kokko J.P. 1976. Urea secretion by the straight segment of the proximal tubule. J. Clin. Invest. 58:604–612

    PubMed  CAS  Google Scholar 

  • Klumper J.D., Ullrich K.J., Hilger H.H. 1958. [Content of urea in collecting tubules of mammalian kidney.]. Pfluegers Arch. 267:238–243

    Article  CAS  Google Scholar 

  • Knepper M.A. 1983. Urea transport in nephron segments from medullary rays of rabbits. Am. J. Physiol. 244:F622–F627

    PubMed  CAS  Google Scholar 

  • Knepper M.A., Chou C.L., Layton H.E. 1993. How is urine concentrated by the renal inner medulla? Contrib. Nephrol. 102:144–160

    PubMed  CAS  Google Scholar 

  • Knepper M.A., Danielson R.A., Saidel G.M., Post R.S. 1977. Quantitative analysis of renal medullary anatomy in rats and rabbits. Kidney Int. 12:313–323

    PubMed  CAS  Google Scholar 

  • Knepper M.A., Roch-Ramel F. 1987. Pathways of urea transport in the mammalian kidney. Kidney Int. 31:629–633

    PubMed  CAS  Google Scholar 

  • Knepper M.A., Saidel G.M., Hascall V.C., Dwyer T. 2003. Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer. Am. J. Physiol. 284:F433–F446

    CAS  Google Scholar 

  • Knepper M.A., Sands J.M., Chou C.L. 1989. Independence of urea and water transport in rat inner medullary collecting duct. Am. J. Physiol. 256:F610–F621

    PubMed  CAS  Google Scholar 

  • Knepper M.A., Star R.A. 1990. The vasopressin-regulated urea transporter in renal inner medullary collecting duct. Am. J. Physiol. 259:F393–F401

    PubMed  CAS  Google Scholar 

  • Kokko J.P., Rector F.C. 1972. Countercurrent multiplication system without active transport in inner medulla. Kidney Int. 2:214–223

    PubMed  CAS  Google Scholar 

  • Kondo Y., Abe K., Igarashi Y., Kudo K., Tada K., Yoshinaga K. 1993. Direct evidence for the absence of active Na+ reabsorption in hamster ascending thin limb of Henle’s loop. J. Clin. Invest. 91:5–11

    PubMed  CAS  Google Scholar 

  • Kuhn W., Ramel A. 1959. Activer Salztransport als moeglicher (und wahrscheinlicher) Einzeleffekt bei der Harnkonzentrierung in der Niere. Helv. Chim. Acta. 42:628–660

    Article  CAS  Google Scholar 

  • Lassiter W.E., Gottschalk C.W., Mylle M. 1961. Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am. J. Physiol. 200:1139–1147

    PubMed  CAS  Google Scholar 

  • Lassiter W.E., Mylle M., Gottschalk C.W. 1966. Micropuncture study of urea transport in rat renal medulla. Am. J. Physiol. 210:965–970

    PubMed  CAS  Google Scholar 

  • Lucien N., Sidoux-Walter F., Olives B., Moulds J., Le Pennec P.Y., Cartron J.P., Bailly P. 1998. Characterization of the gene encoding the human Kidd blood group/urea transporter protein. Evidence for splice site mutations in Jknull individuals. J. Biol. Chem. 273:12973–12980

    Article  PubMed  CAS  Google Scholar 

  • Macey R.I., Farmer R.E. 1970. Inhibition of water and solute permeability in human red cells. Biochem. Biophys. Acta. 211:104–106

    PubMed  CAS  Google Scholar 

  • Mackay E.M., Mackay L.L., Addis T. 1928. Factors which determine renal weight. V. The protein intake. Am. J. Physiol. 86:459–465

    CAS  Google Scholar 

  • Morgan T., Berliner R.W. 1968. Permeability of the loop of Henle, vasa recta, and collecting duct to water, urea, and sodium. Am. J. Physiol. 215:108–115

    PubMed  CAS  Google Scholar 

  • Morgan T., Sakai F., Berliner R.W. 1968. In vitro permeability of medullary collecting ducts to water and urea. Am. J. Physiol. 214:574–581

    PubMed  CAS  Google Scholar 

  • Nakayama Y., Naruse M., Karakashian A., Peng T., Sands J.M., Bagnasco S.M. 2001. Cloning of the rat Slc14a2 gene and genomic organization of the UT-A urea transporter. Biochim. Biophys. Acta. 1518:19–26

    PubMed  CAS  Google Scholar 

  • Naruse M., Klein J.D., Ashkar Z.M., Jacobs J.D., Sands J.M. 1997. Glucocorticoids downregulate the vasopressin-regulated urea transporter in rat terminal inner medullary collecting ducts. J. Am. Soc. Nephrol. 8:517–523

    PubMed  CAS  Google Scholar 

  • Nielsen S., Knepper M.A. 1993. Vasopressin activates collecting duct urea transporters and water channels by distinct physical processes. Am. J. Physiol. 265:F204–F213

    PubMed  CAS  Google Scholar 

  • Nielsen S., Terris J., Smith C.P., Hediger M.A., Ecelbarger C.A., Knepper M.A. 1996. Cellular and subcellular localization of the vasopressin- regulated urea transporter in rat kidney. Proc. Natl. Acad. Sci. USA 93:5495–5500

    Article  PubMed  CAS  Google Scholar 

  • Olives B., Neau P., Bailly P., Hediger M.A., Rousselet G., Cartron J.P., Ripoche P. 1994. Cloning and functional expression of a urea transporter from human bone marrow cells. J. Biol. Chem. 269:31649–31652

    PubMed  CAS  Google Scholar 

  • Peng T., Sands J.M., Bagnasco S.M. 2002. Glucocorticoids inhibit transcription and expression of the UT-A urea transporter gene. Am. J. Physiol. 282:F853–F858

    CAS  Google Scholar 

  • Promeneur D., Rousselet G., Bankir L., Bailly P., Cartron J.P., Ripoche P., Trinh-Trang-Tan M.M. 1996. Evidence for distinct vascular and tubular urea transporters in the rat kidney. J. Am. Soc. Nephrol. 7:852–860

    PubMed  CAS  Google Scholar 

  • Sands J.M. 2003. Mammalian Urea Transporters. Annu. Rev. Physiol. 65: 543–566

    Article  PubMed  CAS  Google Scholar 

  • Sands J.M., Knepper M.A. 1987. Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J. Clin. Invest. 79:138–147

    PubMed  CAS  Google Scholar 

  • Sands J.M., Nonoguchi H., Knepper M.A. 1987. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am. J. Physiol. 253:F823–F832

    PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen B. 1955. Urea excretion in white rats and kangaroo rats as influenced by excitement and by diet. Am. J. Physiol. 181:131–139

    PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen B. 1995. August Krogh Lecture. The renal concentrating mechanism in insects and mammals: a new hypothesis involving hydrostatic pressures. Am. J. Physiol. 268:R1087–1100

    PubMed  CAS  Google Scholar 

  • Seney F.D. Jr., Persson E.G., Wright F.S. 1987. Modification of tubuloglomerular feedback signal by dietary protein. Am. J. Physiol. 252:F83–F90

    PubMed  Google Scholar 

  • Seney F.D. Jr., Wright F.S. 1985. Dietary protein suppresses feedback control of glomerular filtration in rats. J. Clin. Invest. 75:558–568

    PubMed  CAS  Google Scholar 

  • Shannon J.A. 1936. Glomerular filtration and urea excretion in relation to urine flow in the dog. Am. J. Physiol. 117:206–225

    CAS  Google Scholar 

  • Shannon J.A. 1938. Urea excretion in the normal dog during forced diuresis. Am. J. Physiol. 122:782–787

    CAS  Google Scholar 

  • Shayakul C., Knepper M.A., Smith C.P., DiGiovanni S.R., Hediger M.A. 1997. Segmental localization of urea transporter mRNAs in rat kidney. Am. J. Physiol. 272:F654–660

    PubMed  CAS  Google Scholar 

  • Shayakul C., Steel A., Hediger M.A. 1996. Molecular cloning and characterization of the vasopressin-regulated urea transporter of rat kidney collecting ducts. J. Clin. Invest. 98:2580–2587

    PubMed  CAS  Google Scholar 

  • Smith C.P., Lee W.S., Martial S., Knepper M.A., You G., Sands J.M., Hediger M.A. 1995. Cloning and regulation of expression of the rat kidney urea transporter (rUT2). J. Clin. Invest. 96:1556–1563

    PubMed  CAS  Google Scholar 

  • Smith C.P., Potter E.A., Fenton R.A., Stewart G.S. 2004. Characterization of a human colonic cDNA encoding a structurally novel urea transporter, hUT-A6. Am. J. Physiol. 287:C1087–C1093

    Article  CAS  Google Scholar 

  • Star R.A., Nonoguchi H., Balaban R., Knepper M.A. 1988. Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J. Clin. Invest. 81:1879–1888

    PubMed  CAS  Google Scholar 

  • Stephenson J.L. 1972. Concentration of urine in a central core model of the renal counterflow system. Kidney Int. 12:85–94

    Google Scholar 

  • Stewart G.S., Fenton R.A., Wang W., Kwon T.H., White S.J., Collins V.M., Cooper G., Nielsen S., Smith C.P. 2004. The basolateral expression of mUT-A3 in the mouse kidney. Am. J. Physiol. 286:F979–F987

    CAS  Google Scholar 

  • Terris J.M., Knepper M.A., Wade J.B. 2001. UT-A3: localization and characterization of an additional urea transporter isoform in the IMCD. Am. J. Physiol. 280:F325–F332

    CAS  Google Scholar 

  • Thomas S.R. 2000. Inner medullary lactate production and accumulation: a vasa recta model. Am. J. Physiol. 279:F468–F481

    CAS  Google Scholar 

  • Timmer R.T., Klein J.D., Bagnasco S.M., Doran J.J., Verlander J.W., Gunn R.B., Sands J.M. 2001. Localization of the urea transporter UT-B protein in human and rat erythrocytes and tissues. Am. J. Physiol. 281:C1318–C1325

    CAS  Google Scholar 

  • Trinh-Trang-Tan M.M., Bankir L. 1998. Integrated function of urea transporters in the mammalian kidney. Exp. Nephrol. 6:471–479

    Article  PubMed  CAS  Google Scholar 

  • Tsukaguchi H., Shayakul C., Berger U.V., Tokui T., Brown D., Hediger M.A. 1997. Cloning and characterization of the urea transporter UT3: localization in rat kidney and testis. J. Clin. Invest. 99:1506–1515

    Article  PubMed  CAS  Google Scholar 

  • Uchida S., Sohara E., Rai T., Ikawa M., Okabe M., Sasaki S. 2005. Impaired urea accumulation in the inner medulla of mice lacking the urea transporter UT-A2. Mol. Cell. Biol. 25:7357–7363

    Article  PubMed  CAS  Google Scholar 

  • Ullrich K.J., Drenckhan F.O., Jarausch K.H. 1955. Untersuchungen zum Problem der Harnkonzentrierung und Verdћnnung. Uber das osmotische Verhalten von Nierenzellen und die begleitende Elektrolytanh≜ufung im Nierengewebe bei verschiedenen Diuresezust≜nden. Pfluegers Arch. 261:62–77

    Article  CAS  Google Scholar 

  • Ullrich K.J., Jarausch K.H. 1956. Untersuchungen zum Problem der Harnkonzentrierung und Harnverdћnnung. Pfluegers Arch. 262:S537–550

    Article  Google Scholar 

  • Wade J.B., Lee A.J., Liu J., Ecelbarger C.A., Mitchell C., Bradford A.D., Terris J., Kim G.H., Knepper M.A. 2000. UT-A2: a 55-kDa urea transporter in thin descending limb whose abundance is regulated by vasopressin. Am. J. Physiol. 278:F52–F62

    CAS  Google Scholar 

  • Wall S.M., Han J.S., Chou C.-L., Knepper M.A. 1992. Kinetics of urea and water permeability activation by vasopressin in rat terminal IMCD. Am. J. Physiol. 262:989–998

    Google Scholar 

  • Wang X.Y., Beutler K., Nielsen J., Nielsen S., Knepper M.A., Masilamani S. 2002. Decreased abundance of collecting duct urea transporters UT-A1 and UT-A3 with ECF volume expansion. Am. J. Physiol. 282:F577–F584

    CAS  Google Scholar 

  • Xu Y., Olives B., Bailly P., Fischer E., Ripoche P., Ronco P., Cartron J.P., Rondeau E. 1997. Endothelial cells of the kidney vasa recta express the urea transporter HUT11. Kidney Int. 51:138–146

    PubMed  CAS  Google Scholar 

  • Yang B., Bankir L. 2005. Urea and urine concentrating ability: new insights from studies in mice. Am. J. Physiol. 288:F881–F896

    Article  CAS  Google Scholar 

  • Yang B., Verkman A.S. 2002. Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. Evidence for UT-B-facilitated water transport in erythrocytes. J. Biol. Chem. 277:36782–36786

    Article  PubMed  CAS  Google Scholar 

  • You G., Smith C.P., Kanai Y., Lee W.S., Stelzner M., Hediger M.A. 1993. Cloning and characterization of the vasopressin-regulated urea transporter. Nature 365:844–847

    Article  PubMed  CAS  Google Scholar 

  • Yun J., Schoneberg T., Liu J., Schulz A., Ecelbarger C.A., Promeneur D., Nielsen S., Sheng H., Grinberg A., Deng C., Wess J. 2000. Generation and phenotype of mice harboring a nonsense mutation in the V2 vasopressin receptor gene. J. Clin. Invest. 106:1361–1371

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The work described in this paper was supported in part by the Intramural Budget of the National Heart, Lung and Blood Institute (Project ZO1-HL-01282-KE) to M. A. Knepper. The Water and Salt Research Center at the University of Aarhus is established and supported by the Danish National Research Foundation (Danmarks Grundforskningsfond). R. A. Fenton is supported by the Carlsberg Foundation (Carlsbergfondet), the Nordic Council (the Nordic Centre of Excellence Programme in Molecular Medicine) and the Danish National Research Foundation. C. P. Smith is supported by The Royal Society and the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Fenton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenton, R.A., Smith, C. & Knepper, M. Role of Collecting Duct Urea Transporters in the Kidney – Insights from Mouse Models. J Membrane Biol 212, 119–131 (2006). https://doi.org/10.1007/s00232-006-0871-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0871-y

Keywords

Navigation