Skip to main content

Advertisement

Log in

Interaction of Influenza Virus Fusion Peptide with Lipid Membranes: Effect of Lysolipid

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The effect of lysophosphatidylcholine (LPC) on lipid vesicle fusion and leakage induced by influenza virus fusion peptides and the peptide interaction with lipid membranes were studied by using fluorescence spectroscopy and monolayer surface tension measurements. It was confirmed that the wild-type fusion peptide-induced vesicle fusion rate increased several-fold between pH 7 and 5, unlike a mutated peptide, in which valine residues were substituted for glutamic acid residues at positions 11 and 15. This mutated peptide exhibited a much greater ability to induce lipid vesicle fusion and leakage but in a less pH-dependent manner compared to the wild-type fusion peptide. The peptide-induced vesicle fusion and leakage were well correlated with the degree of interaction of these peptides with lipid membranes, as deduced from the rotational correlation time obtained for the peptide tryptophan fluorescence. Both vesicle fusion and leakage induced by the peptides were suppressed by LPC incorporated into lipid vesicle membranes in a concentration-dependent manner. The rotational correlation time associated with the peptide’s tryptophan residue, which interacts with lipid membranes containing up to 25 mole % LPC, was virtually the same compared to lipid membranes without LPC, indicating that LPC-incorporated membrane did not affect the peptide interaction with the membrane. The adsorption of peptide onto a lipid monolayer also showed that the presence of LPC did not affect peptide adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANTS:

1-aminonaphthalene–1,3,6-trisulfonic acid, sodium salt

DOPC:

dioleolyphosphatidylcholine

DOPE:

dioleoylphosphatidylethanolamine DPX, N,N′-p-xylene-bis-pyridinium bromide

E11V/E15V fusion peptide:

GLFGAIAGFIVNGWVGMIDG-amide

LPC:

1-stearoyl-2-hydroxy-phosphatidylcholine

LUV:

large unilamellar vesicles

NBD-PE:

N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-phosphatidylethanolamine

NCB:

0.15 M NaCl/10 mM Na citrate, pH 4.7 or 5.0

NHB:

150 mM NaCl/10 mM HEPES, pH 7.3 or 7.4

Rh-PE:

N-(lissamine rhodamine B sulphonyl)- phosphatidylethanolamine

SUV:

small unilamellar vesicles

NTB:

0.15 M NaCl/10 mM Tris, pH 7.4

WT-fusion peptide:

GLFGAIAGFIENGWEGMIDG-amide

References

  1. Bailey A., Zhukovsky M.,.Gliozzi A., Chernomordik L.V. 2005. Liposome composition effects on lipid mixing between cells expressing influenza virus hemagglutinin and bound liposomes. Arch. Biochem. Biophys. 439:211–221

    Article  PubMed  CAS  Google Scholar 

  2. Baker G.A., Pandey S., Bright F.V. 1999. Multi harmonic Fourier (MHF) Phase-Modulation Fluorescence Spectroscopy with Laser excitation at 257.3nm. Appl. Spectrosc. 53:1475–1479

    Article  CAS  Google Scholar 

  3. Baljinnyam B., Schroth-Diez B., Korte T., Herrmann A. 2000. Lysolipids do not inhibit Influenza virus fusion by interaction with hemagglutinin. J. Biol. Chem. 277:20461–20467

    Article  CAS  Google Scholar 

  4. Banzagni N.J., Baker G.A., Pandey S., Niemeyar E.D., Bright F.V. 2000. On the origin of the heterogeneous emission from pyrene sequestered within tetramethylorthosilicate-based xerogels: A decay-associated spectrum and O2 quenching study. J. Sol-Gel Sci. Tech. 17:83–90

    Article  Google Scholar 

  5. Carr C.M., Kim P.S. 1993. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73:823–832

    Article  PubMed  CAS  Google Scholar 

  6. Chen J., Wharton S.A., Weissenhorn W., Calder L.J., Hughson F.M., Skehel J.J., Wiley D.C. 1995. A soluble domain of the membrane-anchoring chain of influenza virus hemagglutinin (HA2) folds in Escherichia coli into the low-pH-induced conformation, Proc. Natl. Acad. Sci. USA 92:12205–12209

    Article  CAS  Google Scholar 

  7. Chernomodik L.V., Vogel S.S., Sokoloff A., Onaran H.O., Leikin E.A., Zimmerberg J. 1993. Lysolipids reversibly inhibit Ca(2+)-, GTP- and pH-dependent fusion of biological membranes. FEBS Lett. 318:71–76

    Article  Google Scholar 

  8. Clague M.J., Knutson J.R., Blumenthal R., Herrmann A. 1991. Interaction of influenza hemagglutinin amino-terminal peptide with phospholipid vesicles: A fluorescence study. Biochemistry 30:5491–5497

    Article  PubMed  CAS  Google Scholar 

  9. Colotto A., Epand R.M. 1997. Structural study of the relationship between the rate of membrane fusion and the ability of the fusion peptide of Influenza virus to perturb bilayers. Biochemistry. 36:7644–7651

    Article  PubMed  CAS  Google Scholar 

  10. Doms R.W., Helenius A., White J. 1985. Membrane fusion activity of the influenza virus hemagglutinin. J. Biol. Chem. 260:2973–2981

    PubMed  CAS  Google Scholar 

  11. Epand R.M. 2003. Fusion peptides and the mechanism of viral fusion. Biochim. Biophys. Acta. 1614:116–121

    Article  PubMed  CAS  Google Scholar 

  12. Epand R.F., Macosko J.C., Russell C.J., ShinY-K., Epand R.M. 1999. The ectodomain of HA2 of influenza virus promotes rapid pH dependent membrane fusion. J. Mol. Biol. 286:489–503

    Article  PubMed  CAS  Google Scholar 

  13. Epand R.M., Epand R.F., Martin I., Ruysschaert J-M. 2001. Membrane interactions of mutated forms of the Influenza fusion peptide. Biochemistry 40:8800–8807

    Article  PubMed  CAS  Google Scholar 

  14. Ellens H., Bentz J., Szoka F.C. 1984. pH-induced destabilization of phosphatidylethanolamine-containing liposomes: Role of bilayer contact. Biochemistry 23:1532–1538

    Article  PubMed  CAS  Google Scholar 

  15. Gething M.J., Doms R.W., York D., White J. 1986. Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemaggulutinin of influenza virus. J. Cell Biol. 102:11–23

    Article  PubMed  CAS  Google Scholar 

  16. Gunther-Ausborn S., Praetor A., Stegmann T. 1995. Inhibition of Influenza-induced membrane fusion by lysophosphatidylcholine. J. Biol.Chem. 270:29279–29285

    Article  PubMed  CAS  Google Scholar 

  17. Hoekstra D., Duzgunes N. 1993. Lipid mixing assays to determine fusion in liposomes systems. Methods Enzym. 220:15–32

    CAS  Google Scholar 

  18. Korte T., Epand R.F., Epand R.M., Blumenthal R. 2001. Role of the Glu residues of the influenza hemagglutinin fusion peptide in the pH dependence of fusion activity. Virology 289:353–361

    Article  PubMed  CAS  Google Scholar 

  19. Lear J.D., De Grado W.F. 1987. Membrane binding and conformational properties of peptide representing the amino terminus of influenza virus HA2. J. Biol. Chem. 262:6500–6505

    PubMed  CAS  Google Scholar 

  20. Maeda T., Kawasaki K. , Ohnishi S. 1981. Interaction of influenza virus hemagglutinin with target membranes lipid is a key step in virus-induced hemolysis and fusion at pH 5.2. Proc. Natl. Acad. Sci. USA 78:4133–4137

    Article  PubMed  CAS  Google Scholar 

  21. Martin I., Dubois M.C., Defrrise-Quertain F., SaermarkT., Burny A., Brasseur R., Ruysschaert J.M. 1994. Correlation between fusogenicity of synthetic modified peptide corresponding to the NH2-terminal extremity of simian immunodeficiency virus gp32 and their mode of insertion into the lipid bilayer: an infrared spectroscopy study. J. Virol. 68:1139–1148

    PubMed  CAS  Google Scholar 

  22. Martin I., Ruysschaert J.M. 1995: Lysophosphatidylcholine inhibits vesicle fusion induced by the NH2-terminal extremity of SIV/IV fusogenic proteins. Biochim. Biophys. Acta. 1240:95–100

    Article  PubMed  Google Scholar 

  23. Ohki S., Duzgunes N. 1979. Divalent cation-induced interaction of phospholipid vesicle and monolayer membranes. Biochim. Biophys. Acta 552:438–449

    Article  PubMed  CAS  Google Scholar 

  24. Ohki S., Arnold K. 2000. A mechanism for ion-induced lipid vesicle fusion. Colloid and Surfaces B: Biointerfaces 18:83–97

    Article  CAS  Google Scholar 

  25. Ohki S., Arnold K. 2003. Surface dielectric constant of lipid vesicles. Methods. Enzym. 367:255–272

    Google Scholar 

  26. Pecheur E. I., Martin I., Bienvenue A., Ruysschaert J. M., Hoekstra D. 2000. Protein-induced fusion can be modulated by target membrane lipids through a structural switch at the level of the fusion peptide. J. Biol. Chem. 275:3936–3942

    Article  PubMed  CAS  Google Scholar 

  27. Razinkov V., Melikyan G.B., Epand R.M., Epand R.F., Cohen F.S. 1998. Effects of spontaneous bilayer curvature on Influenza virus-mediated fusion pores. J. Gen. Physiol. 112:409–422

    Article  PubMed  CAS  Google Scholar 

  28. Ruggiero A.J., Todd D.C., Fleming G.R. 1990. Subpicosecond fluorescence anisotropy studies of tryptophan in water. J. Am. Chem. Soc. 112:1003–1014

    Article  CAS  Google Scholar 

  29. Skehel J.J., Bayley P.M., Brown E.B., Martin S.R., Waterfield M.D., White J.M., Wilson I.J., Wiley D.C. 1982. Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc. Natl. Acad. Sci. USA 79:968–972

    Article  PubMed  CAS  Google Scholar 

  30. Stegmann T., Hoekstra D., Scherphof G., Wilschut J. 1986. Fusion activity of influenza virus. J. Biol. Chem. 261:10966–10969

    PubMed  CAS  Google Scholar 

  31. Stegmann, T., Deffino, J. M., Richards, F.M., Helenius, A. 199x. The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior fusion. J. Biol. Chem. 266:18404–18410

  32. Trivedi V. D., Yu C., Veeramuthu B., Francis S., Chang D. K. 2000. Fusion induced aggregation of model vesicles studied by dynamic and static light scattering. Chem. Phys. Lipids. 107:99–106

    Article  PubMed  CAS  Google Scholar 

  33. Valeur B., Webber G. 1977. Resolution of the fluorescence excitation spectrum of indole into the 1La and 1Lb excitation bands. Photochem. Photobiol. 25:441–444

    PubMed  CAS  Google Scholar 

  34. Wharton S.A., Martin S.R., Ruigrok R.W., Skehel J.J., Wiley D.C. 1988. Membrane fusion by peptide analogues of influenza virus haemagglutinin. J. Gen. Virol. 69:1847–1857

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded in part by the Canadian Institutes for Health Research (grant MA-7654) to RME. FVB also acknowledges support from the National Science Foundation. GAB gratefully acknowledges ORNL for providing generous support of this work in the form of a Eugene P. Wigner Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ohki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohki, S., Baker, G., Page, P. et al. Interaction of Influenza Virus Fusion Peptide with Lipid Membranes: Effect of Lysolipid. J Membrane Biol 211, 191–200 (2006). https://doi.org/10.1007/s00232-006-0862-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0862-z

Keywords

Navigation