Skip to main content
Log in

Mefloquine Effects on the Lens Suggest Cooperative Gating of Gap Junction Channels

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Mefloquine (MFQ) selectively blocks exogenously expressed gap junction channels composed of C×50 but not C×46. The purpose of the current study was to evaluate MFQ effects on wild-type (WT) mouse lenses that express both C×50 and C×46 in their outer shell of differentiating fibers (DFs). Lenses in which C×46 was knocked into both C×50 alleles (KI) were used as controls; MFQ had no effect on coupling in these lenses. When WT lenses were exposed to MFQ, the DF coupling conductance decreased significantly, suggesting that C×50 contributes about 57% of the coupling conductance in DF and C×46 contributes 43%. Remarkably, in the presence of MFQ, the 43% of the channels that remained open did not gate closed in response to a reduction in pH, whereas in the absence of MFQ, the same pH change caused all the DF channels to gate closed. Since MFQ is a selective blocker of C×50 channels, it appears that C×46 channels lack pH-mediated gating in the absence of functional C×50 channels but are pH-sensitive in the presence of C×50 channels. These results suggest the two types of channels interact and gate cooperatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baldo G.J., Gong X., Martinez-Wittinghan F.J., Kumar N.M., Gilula N.B., Mathias R.T. 2001. Gap junctional coupling in lenses from alpha(8) connexin knockout mice. J. Gen. Physiol. 118:447–456

    Article  PubMed  CAS  Google Scholar 

  • Baldo G.J., Mathias R.T. 1992. Spatial variations in membrane properties in the intact rat lens. Biophys. J. 63:518–529

    PubMed  CAS  Google Scholar 

  • Cruikshank S.J., Hopperstad M., Younger M., Connors B.W., Spray D.C., Srinivas M. 2004. Potent block of C×36 and C×50 gap junction channels by mefloquine. Proc. Natl. Acad. Sci. USA 101:12364–12369

    Article  PubMed  CAS  Google Scholar 

  • Eckert R. 2002. pH gating of lens fibre connexins. Pfluegers Arch. 443:843–851

    Article  CAS  Google Scholar 

  • Ek J.F., Delmar M., Perzova R., Taffet S.M. 1994. Role of histidine 95 on pH gating of the cardiac gap junction protein connexin43. Circ. Res. 74:1058–1064

    PubMed  CAS  Google Scholar 

  • Ek-Vitorin J.F., Calero G., Morley G.E., Coombs W., Taffet S.M., Delmar M. 1996. pH regulation of connexin43: Molecular analysis of the gating particle. Biophys. J. 71:1273–1284

    PubMed  CAS  Google Scholar 

  • Gonen T., Cheng Y., Sliz P., Hiroaki Y., Fujiyoshi Y., Harrison S.C., Walz T. 2005. Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438:633–638

    Article  PubMed  CAS  Google Scholar 

  • Gonen T., Sliz P., Kistler J., Cheng Y., Walz T. 2004. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429:193–197

    Article  PubMed  CAS  Google Scholar 

  • Gong X., Baldo G.J., Kumar N.M., Gilula N.B., Mathias R.T. 1998. Gap junctional coupling in lenses lacking alpha3 connexin. Proc. Natl. Acad. Sci. USA 95:15303–15308

    Article  PubMed  CAS  Google Scholar 

  • Hopperstad M.G., Srinivas M., Spray D.C. 2000. Properties of gap junction channels formed by C×46 alone and in combination with C×50. Biophys. J. 79:1954–1966

    PubMed  CAS  Google Scholar 

  • Jiang J.X., Goodenough D.A. 1996. Heteromeric connexons in lens gap junction channels. Proc. Natl. Acad. Sci. USA 93:1287–1291

    Article  PubMed  CAS  Google Scholar 

  • Kistler J., Christie D., Bullivant S. 1988. Homologies between gap junction proteins in lens, heart and liver. Nature 331:721–723

    Article  PubMed  CAS  Google Scholar 

  • Konig N., Zampighi G.A. 1995. Purification of bovine lens cell-to-cell channels composed of connexin44 and connexin50. J. Cell Sci. 108:3091–3098

    PubMed  CAS  Google Scholar 

  • Lin J.S., Fitzgerald S., Dong Y., Knight C., Donaldson P., Kistler J. 1997. Processing of the gap junction protein connexin50 in the ocular lens is accomplished by calpain. Eur. J. Cell Biol. 73:141–149

    PubMed  CAS  Google Scholar 

  • Manivannan K., Mathias R.T., Gudowska-Nowak E. 1996. Description of interacting channel gating using a stochastic Markovian model. Bull. Math Biol. 58:141–174

    PubMed  CAS  Google Scholar 

  • Mathias R., Rae J.L., Baldo G.J. 1997. Physiological properties of the normal lens. Physiol. Rev. 77:21–50

    PubMed  CAS  Google Scholar 

  • Mathias R.T., Rae J.L., Eisenberg R.S. 1981. The lens as a nonuniform spherical syncytium. Biophys. J. 34:61–83

    Article  PubMed  CAS  Google Scholar 

  • Mathias R.T., Riquelme G., Rae J.L. 1991. Cell to cell communication and pH in the frog lens. J. Gen. Physiol. 98:1085–1103

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Wittinhan F.J., Sellitto C., White T.W., Mathias R.T., Paul D., Goodenough D.A. 2004. Lens gap junctional coupling is modulated by connexin identity and the locus of gene expression. Invest. Ophthalmol. Vis. Sci. 45:3629–3637

    Article  Google Scholar 

  • Morley G.E., Taffet S.M., Delmar M. 1996. Intramolecular interactions mediate pH regulation of connexin43 channels. Biophys. J. 70:1294–1302

    PubMed  CAS  Google Scholar 

  • Motten A.G., Martinez L.J., Holt N., Sik R.H., Reszka K., Chignell C.F., Tonnesen H.H., Roberts J.E. 1999. Photophysical studies on antimalarial drugs. Photochem. Photobiol. 69:282–287

    Article  PubMed  CAS  Google Scholar 

  • Nielsen P.A., Baruch A., Shestopalov V.I., Giepmans B.N., Dunia I., Benedetti E.L., Kumar N.M. 2003. Lens connexins alpha3C×46 and alpha8C×50 interact with zonula occludens protein-1 (ZO-1). Mol. Biol. Cell 14:2470–2481

    Article  PubMed  CAS  Google Scholar 

  • Peracchia C., Bernardini G. 1984. Gap junction structure and cell-to-cell coupling regulation: Is there a calmodulin involvement? Fed. Proc. 43:2681–2691

    CAS  Google Scholar 

  • Peracchia C., Wang X.C. 1997. Connexin domains relevant to the chemical gating of gap junction channels. Braz. J. Med. Biol. Res. 30:577–590

    Article  PubMed  CAS  Google Scholar 

  • Spray D.C., Harris A.L., Bennett M.V. 1981. Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211:712–715

    Article  PubMed  CAS  Google Scholar 

  • Spray D.C., Stern J.H., Harris A.L., Bennett M.V. 1982. Gap junctional conductance: Comparison of sensitivities to H and Ca ions. Proc. Natl. Acad. Sci. USA 79:441–445

    Article  PubMed  CAS  Google Scholar 

  • Srinivas M., Costa M., Gao Y., Fort A., Fishman G.I., Spray D.C. 1999. Voltage dependence of macroscopic and unitary currents of gap junction channels formed by mouse connexin50 expressed in rat neuroblastoma cells. J. Physiol. 517:673–689

    Article  PubMed  CAS  Google Scholar 

  • Stergiopoulos K., Alvarado J.L., Mastroianni M., Ek-Vitorin J.F., Taffet S.M., Delmar M. 1999. Hetero-domain interactions as a mechanism for the regulation of connexin channels. Circ. Res. 84:1144–1155

    PubMed  CAS  Google Scholar 

  • Trexler E.B., Bukauskas F.F., Bennett M.V., Bargiello T.A., Verselis V.K. 1999. Rapid and direct effects of pH on connexins revealed by the connexin46 hemichannel preparation. J. Gen. Physiol. 113:721–742

    Article  PubMed  CAS  Google Scholar 

  • Valiunas V., Weingart R. 2001. Co-operativity between mouse connexin30 gap junction channels. Pfluegers Arch. 441:756–760

    Article  CAS  Google Scholar 

  • White T.W. 2002. Unique and redundant connexin contributions to lens development. Science 295:319–320

    Article  PubMed  CAS  Google Scholar 

  • White T.W., Bruzzone R., Wolfram S., Paul D.L., Goodenough D.A. 1994. Selective interactions among the multiple connexin proteins expressed in the vertebrate lens: The second extracellular domain is a determinant of compatibility between connexins. J. Cell Biol. 125:879–892

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi D.T., Huang J.T., Ma D. 1995. Regulation of gap junction intercellular communication by pH in MC3T3-E1 osteoblastic cells. J. Bone Miner. Res. 10:1891–1899

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Eye Institute grants EY06391, EY13163 and EY13869.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Mathias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Wittinghan, F.J., Srinivas, M., Sellitto, C. et al. Mefloquine Effects on the Lens Suggest Cooperative Gating of Gap Junction Channels. J Membrane Biol 211, 163–171 (2006). https://doi.org/10.1007/s00232-006-0021-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0021-6

Keywords

Navigation