Skip to main content
Log in

An atomistic–continuum hybrid scheme for numerical simulation of droplet spreading on a solid surface

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

We present an atomistic–continuum hybrid method to investigate spreading dynamics of drops on solid surfaces. The Navier–Stokes equations are solved by the finite-volume method in a continuum domain comprised of the main body of the drop, and atomistic molecular dynamics simulations are used in a particle domain in the vicinity of the contact line. The spatial coupling between the continuum and particle domains is achieved through constrained dynamics of flux continuities in an overlap domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A J :

Surface of volume V J

C :

Continuum domain

F i :

Force on atom i

F ij :

Interaction force between two atoms i and j

h :

Location of the drop interface

I :

Number of continuum cells in the x-direction

K :

Number of continuum cells in the y-direction

L :

Axial length of the particle domain

m :

Mass of a fluid atom

n :

Normal vector

N J :

Number of atoms in cell J

p :

Pressure

P :

Particle (molecular) domain

r :

Distance between two liquid atoms

R :

Equivalent cylindrical radius of the drop

Re :

Reynolds number (≡ρ UR/μ)

r ij :

Distance between atoms i and j

S :

Number of particles to be removed or inserted

t :

Time

T :

Liquid temperature

T :

Newtonian stress tensor

u :

X-component of velocity

U :

Characteristic velocity (≡γ/μ)

u :

Velocity vector

u ff :

Interaction potential between two liquid atoms

u fs :

Solid−liquid interaction potential

v :

Y-component of velocity

v i :

Velocity of atom i

V J :

Volume of cell J

V x :

Cell volume

x f :

Horizontal coordinate of a liquid atom

X H :

Location of the P and C domain interface

\(\ddot{{\bf x}_i}\) :

Acceleration of atom i

y f :

Vertical coordinate of a liquid atom

z f :

Axial coordinate of a liquid atom

\(\varDelta t_c\) :

Macroscopic time step

\(\varDelta t_p\) :

Microscopic time step

ε ff :

Energy parameter of the Lennard-Jones potential

ε fs :

Energy parameter of the solid–liquid potential

γ :

Interfacial tension

μ :

Liquid viscosity

ρ :

Liquid density

ρ s :

Solid density

σ ff :

Length parameter of the Lennard-Jones potential

σ fs :

Length parameter of the solid–liquid potential

(ξη):

Coordinates in the computational domain

∇:

Gradient operator

s :

Surface gradient operator

References

  1. Dussan V, Elizebeth B (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu Rev Fluid Mech 11:371–400

    Article  Google Scholar 

  2. Marmur A (1983) Equilibrium and spreading of liquids on solid surfaces. Adv Colloid Interface Sci 19:75–102

    Article  Google Scholar 

  3. De Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863

    Article  Google Scholar 

  4. Kistler SF (1993) Hydrodynamics of wetting. In: Berg JC (eds) Wettability. Marcel Dekker, New York

    Google Scholar 

  5. Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing .... Annu Rev Fluid Mech 38:159–192

    Article  MathSciNet  Google Scholar 

  6. Rauscher M, Dietrich S (2008) Wetting phenomena in Nanofluidics. Annu Rev Mater Res 38:143–172

    Article  Google Scholar 

  7. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E (2009) Wetting and spreading. Rev Mod Phys 81:739–805

    Article  Google Scholar 

  8. Huh E, Scriven LE (1971) Hydrodynamics model of steady movement of a solid/liquid/fluid contact line. J Colloid Interface Sci 35: 85–101

    Article  Google Scholar 

  9. Dussan V, Elizebeth B, Davis SH (1974) On the motion of a fluid–fluid interface along a solid surface. J Fluid Mech 65:71–95

    Article  MATH  Google Scholar 

  10. Haley PJ, Miksis MJ (1991) The effect of the contact line on droplet spreading. J Fluid Mech 223:57-81

    Article  MATH  MathSciNet  Google Scholar 

  11. Benintendi SW, Smith MK (1999) The spreading of a non-isothermal droplet. Phys Fluids 11:982–989

    Article  MATH  MathSciNet  Google Scholar 

  12. Kumar G, Prabhu KN (2007) Review of non-reactive and reactive wetting liquids on surfaces. Adv Colloid Interface Sci 133:61–89

    Article  Google Scholar 

  13. Koplik J, Banavar JR (1995) Continuum deductions from molecular hydrodynamics. Annu Rev Fluid Mech 27:257–292

    Article  Google Scholar 

  14. Heine DR, Grest GS, Webb EB (2004) Spreading dynamics of polymer nanodroplets in cylindrical geometries. Phys Rev E 70:011606

    Article  Google Scholar 

  15. Koumoutsakos P (2005) Multiscale flow simulations using particles. Annu Rev Fluid Mech 37:457–487

    Article  MathSciNet  Google Scholar 

  16. Ren WQ (2007) Analytical and numerical study of coupled atomistic–continuum methods for fluids. J Comp Phys 227: 1353–1371

    Article  MATH  Google Scholar 

  17. Zhang QH, Liu PLF (2009) HyPAM: a hybrid continuum-particle model for incompressible free-surface flows. J Comp Phys 228: 1312–1342

    Article  MATH  Google Scholar 

  18. O’Connell ST, Thompson PA (1995) Molecular dynamics-continuum hybrid computations: a tool for studying complex fluid flows. Phys Rev E 52:5792–5795

    Article  Google Scholar 

  19. Hadjiconstantinou NG (1999) Combining atomistic and continuum simulations of contact-line motion. Phys Rev E 59:2475–2478

    Article  Google Scholar 

  20. Nie XB, Chen SY, E WN, Robbins MO (2004) A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow. J Fluid Mech 500:55–64

    Google Scholar 

  21. Li Q, He GW (2009) An atomistic–continuum hybrid simulation of fluid flows over superhydrophobic surfaces. Biomicrofluidics 3:022409

    Article  Google Scholar 

  22. Flekkøy EG,Wagner G, Feder J (2000) Hybrid model for combined particle and continuum dynamics. Europhys Lett 52:271

    Article  Google Scholar 

  23. Wagner G, Flekkøy EG, Feder J, Jossang T (2002) Coupling molecular dynamics and continuum dynamics. Comput Phys Comm 147:670–673

    Article  MATH  Google Scholar 

  24. Delgado-Buscalioni R, Conveney PV (2003) Continuum-particle hybrid coupling for mass, momentum and energy transfers in unsteady fluid flow. Phys Rev E 67:046704

    Article  Google Scholar 

  25. Barsky S, Delgado-Buscalioni R, Conveney PV (2004) Comparison of molecular dynamics with hybrid continuum-molecular dynamics for a single tethered polymer in a solvent. J Chem Phys 121:2403–2411

    Article  Google Scholar 

  26. Liu J, Chen SY, Nie XB, Robbins MO (2007) A continuum-atomistic simulation of heat transfer in micro- and nano-flows. J Comp Phys 227:279–291

    Article  MATH  Google Scholar 

  27. Flekkøy EG, Feder J, Wagner G (2001) Coupling particles and fields in a diffusive hybrid model. Phys Rev E 64:066302

    Article  Google Scholar 

  28. Wagner G, Flekkøy EG (2004) Hybrid computations with flux exchange. Phil Trans R Soc Lond A 362:1655–1665

    Article  MATH  Google Scholar 

  29. Meier K, Laesecke A, Kabelac S (2004) Transport coefficients of the Lennard-Jones model fluid. I. Viscosity. J Chem Phys 121:3671–3687

    Article  Google Scholar 

  30. Shi B (2006) Molecular dynamics simulation of the surface tension and contact angle of argon and water. Ph.D. Dissertation, University of California, Los Angeles

  31. Wu H, Borhan A, Fichthorn KA (2010) Interaction of fluids with physically-patterned solid surfaces. J Chem Phys 133:054704

    Article  Google Scholar 

  32. Wu H, Borhan A, Fichthorn KA (2009) Coarse-grained interaction of a fluid with a physically-patterned solid surface: application to nanodroplet wetting. J Low Temp Phys 157:277–295

    Article  Google Scholar 

  33. Kirkman NT, Stirner T, Hagston WE (2004) A new method for investigating the surface tension from molecular dynamics simulations applied to liquid droplets. Comput Mater Sci 30:126–130

    Article  Google Scholar 

  34. Haj-Hariri H, Shi Q, Borhan A (1997) Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers. Phys Fluids 9:845–855

    Article  Google Scholar 

  35. Gupta NR, Haj-Hariri H, Borhan A (2006) Thermocapillary flow in double-layer fluid structures: an effective single-layer model. J Colloid Interface Sci 293:158–171

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant No. CBET 0730987 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. Wu.

Appendix

Appendix

The computational domain is fixed as a unit square by using the transformation

$$\xi=\frac{x}{X},\quad \eta=\frac{y}{h} .$$
(16)

The transformation metrics for this coordinate transformation are given by

$$\xi_{,x}=\frac{1}{X}; \quad \eta_{,x}=-\frac{h'}{h}\eta$$
(17)
$$\eta_{,y}=\frac{1}{h} ; \quad \eta_{,xx}=-\frac{h''}{h}\eta+\frac{2{h'}^2}{h^2}\eta$$
(18)
$$h'=\frac{1}{X}h_{,\xi}; \quad h''=\frac{1}{X^2}h_{,\xi\xi}$$
(19)

where the subscript,“x” denotes differentiation with respect to x. The Navier–Stokes equations are transformed to the following equations:

$$\begin{aligned} &u_{,t}+u\left(\xi_{,x} u_{,\xi}+\eta_{,x}u_{,\eta}\right)+v\eta_{,y}u_{,\eta} = -\left(\xi_{,x} p_{,\xi}+\eta_{,x} p_{,\eta}\right)\\ &+ \frac{1}{Re}\left[\xi_{,x}^2 u_{,\xi \xi}+2\xi_{,x}\eta_{,x} u_{,\xi \eta}+\eta_{,xx} u_{,\eta}+\left(\eta_{,x}^2+\eta_{,y}^2\right) u_{,\eta \eta}\right] \end{aligned}$$
$$\begin{aligned} &v_{,t}+u\left(\xi_{,x} v_{,\xi}+\eta_{,x} v_{,\eta}\right)+v\eta_{,y} v_{,\eta}= -\eta_{,y} p_{,\eta}\\ &+\frac{1}{Re}\left[\xi_{,x}^2 v_{,\xi\xi}+2\xi_{,x}\eta_{,x} v_{,\xi \eta}+\eta_{,xx} v_{,\eta} +\left(\eta_{,x}^2+\eta_{,y}^2\right) v_{,\eta\eta}\right] \end{aligned}$$

Similarly, the boundary conditions are transformed as follows:

$$u=v=0;\quad p_{,\eta}=0\quad at \quad \eta=0$$
(20)
$$u=0; \quad v_{,\xi}=0;\quad p_{,\xi}=0 \quad at \quad \xi=0$$
(21)
$$\begin{aligned} &Re p+\frac{2h'}{1+{h'}^{2}}\left(\eta_{,y} u_{,\eta}+\xi_{,x} v_{,\xi}+\eta_{,x} v_{,\eta}\right)-\eta_{,y} v_{,\eta}\\ &-\left(\xi_{,x} u_{,\xi}+\eta_{,x} u_{,\eta}\right){h'}^{2} +h{''}\left(1+{h}^{'2}\right)^{-\frac{3}{2}}=0 \quad at \quad \eta=1 \end{aligned}$$
(22)
$$\begin{aligned} &\left(\eta_{,y} u_{,\eta}+\xi_{,x} v_{,\xi}+\eta_{,x} v_{,\eta}\right)\left(1-{h'}^2\right)\\ &-2\left(\xi_{,x} u_{,\xi}+\eta_{,x} u_{,\eta}-\eta_{,y} v_{,\eta}\right)h{'}=0 \quad at \quad \eta=1 \end{aligned}$$
(23)
$$\frac{\partial h}{\partial t} +uh'-v=0 \quad at\quad \eta=1$$
(24)

In these equations, the Reynolds number Re ≡ ρ UR/μ is defined based on the characteristic velocity Uγ/μ.

To solve these equations, the computational domain is divided into cells of size \(\varDelta\xi=1/I\) by \(\varDelta\eta=1/K\), with the coordinates of the cell centers given by \(\xi_i=(i-1/2)\varDelta\xi\) (i = 1, ..., I), and \(\eta_k=(k-1/2)\varDelta\eta (k=1,\ldots, K)\). A staggered computational grid is used wherein the pressure nodes are positioned at the center of the cells, the x- velocity nodes at the midpoint of the right faces, and the y- velocity nodes at the midpoint of the top faces. Spatial discretization of the transformed equations using a second-order accurate finite difference approximation results in a nonlinear coupled set of equations which were solved using the following time-splitting algorithm [34, 35]:

$$\frac{{\bf u}^{*}-{\bf u}^{n}}{\varDelta t_c}=-{\bf u}^{n}\cdot\nabla {\bf u}^{n}+\frac{\nabla^{2}{\bf u}^{n}}{Re}$$
(25)
$$\nabla^2 p^{n+1}=\frac{1}{\varDelta t_c} \nabla\cdot {\bf u}^{*}$$
(26)
$${\bf u}^{n+1}={\bf u}^{*}-\varDelta t_c\nabla p^{n+1}$$
(27)

The transformed equations resulting from the splitting algorithm take the following form:

$$\begin{aligned} &u^*=u+\varDelta t_c -u\left(\xi_{,x} u_{,\xi}+\eta_{,x} u_{,\eta}\right)-v \eta_{,y} u_{,\eta}\\ &+\frac{1}{Re}\left[\xi_{,x}^{2} u_{,\xi\xi}+2\xi_{,x}\eta_{,x} u_{,\xi \eta}+\eta_{,xx} u_{,\eta}+\left(\eta_{,x}^2+\eta_{,y}^2\right) u_{,\eta\eta}\right] \end{aligned}$$
(28)
$$\begin{aligned} &v^*=v+\varDelta t_c -u\left(\xi_{,x} v_{,\xi}+\eta_{,x} v_{,\eta}\right)-v \eta_{,y} v_{,\eta}\\ &+\frac{1}{Re}\left[\xi_{,x}^{2} v_{,\xi\xi}+2\xi_{,x}\eta_{,x} v_{,\xi \eta}+\eta_{,xx} v_{,\eta}+\left(\eta_{,x}^2+\eta_{,y}^2\right) v_{,\eta\eta}\right] \end{aligned}$$
(29)
$$\begin{aligned} &\xi_{,x}^2 p_{,\xi \xi}+2\xi_{,x}\eta_{,x} p_{,\xi\eta}+\eta_{,xx} p_{,\eta}+\left(\eta_{,x}^2+\eta_{,y}^2\right) p_{,\eta \eta}\\ &=\frac{1}{\varDelta t_c}\left(\xi_{,x} u^*_{,\xi}+\eta_{,x} u^*_{,\eta}+\eta_{,y} v^*_{,\eta}\right) \end{aligned}$$
(30)
$$u=u^*-\varDelta t_c\left(\xi_{,x} p_{,\xi}+\eta_{,x} p_{,\eta}\right)$$
(31)
$$v=v^*-\varDelta t_c\left(\eta_{,y} p_{,\eta}\right)$$
(32)

During each time step, the intermediate velocity field u * is calculated from Eq. (25), and used to obtain the pressure at the next time step through an iterative solution of Eq. (26). Subsequently, the new pressure distribution is used in Eq. (27) to advance the velocity field to the next time step. Once the new velocity field, u n+1, is determined, the interface position \(h(x,t+\varDelta t_c)\) is updated using the kinematic condition (Eq. (8)).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H.F., Fichthorn, K.A. & Borhan, A. An atomistic–continuum hybrid scheme for numerical simulation of droplet spreading on a solid surface. Heat Mass Transfer 50, 351–361 (2014). https://doi.org/10.1007/s00231-013-1270-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1270-4

Keywords

Navigation