Skip to main content
Log in

Effects of Thyroxine (T4), 3,5,3′-triiodo-l-thyronine (T3) and their Metabolites on Osteoblast Differentiation

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Studies involving human genetic mutations and mutant mouse models have provided irrevocable evidence for a key role for thyroid hormones (THs) in the regulation of skeletal growth. While T3 binds to TH receptors with higher affinity than T4, T4 occupied TH receptors have also been reported in the nucleus under euthyroid conditions raising the possibility that T4 bound nuclear receptors may be biologically relevant in thyroid syndromes with elevated free T4 and reduced T3 levels. We, therefore, evaluated the direct effects of T4, T3, and their metabolites (rT3 and T2) in stimulating osteoblast differentiation using MC3T3-E1 preosteoblasts which do not produce detectable levels of deiodinases. Under serum-free conditions, a 24-h treatment of MC3T3-E1 cells with THs and their metabolites caused a dose-dependent increase in the expression of osteoblast differentiation markers, osterix, and osteocalcin. Circulating concentrations of T3 (~1 ng/ml) and T4 (~30 ng/ml) showed similar potency in stimulating osteoblast differentiation marker expression, while rT3 and T2 were less potent than T3 and T4. Moreover, T3 and T4 treatments elevated the IGF-1 mRNA level suggesting the involvement of IGF-1 signaling in the TH regulation of osteoblast differentiation. We conclude that an elevated T4 level in the absence of T3 may exert stimulatory effects on osteoblast differentiation. The establishment of cell-specific effects of T4 on osteoblasts may provide a strategy to generate T4 mimics that exert skeletal specific effects without the confounding T3 effects on other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bochukova E, Schoenmakers N, Agostini M, Schoenmakers E, Rajanayagam O, Keogh JM, Henning E, Reinemund J, Gevers E, Sarri M, Downes K, Offiah A, Albanese A, Halsall D, Schwabe JW, Bain M, Lindley K, Muntoni F, Vargha-Khadem F, Dattani M, Farooqi IS, Gurnell M, Chatterjee K (2012) A mutation in the thyroid hormone receptor alpha gene. N Engl J Med 366:243–249

    Article  CAS  PubMed  Google Scholar 

  2. Rivkees SA, Bode HH, Crawford JD (1988) Long-term growth in juvenile acquired hypothyroidism: the failure to achieve normal adult stature. N Engl J Med 318:599–602

    Article  CAS  PubMed  Google Scholar 

  3. Harvey CB, O’Shea PJ, Scott AJ, Robson H, Siebler T, Shalet SM, Samarut J, Chassande O, Williams GR (2002) Molecular mechanisms of thyroid hormone effects on bone growth and function. Mol Genet Metab 75:17–30

    Article  CAS  PubMed  Google Scholar 

  4. Kim HY, Mohan S (2013) Role and mechanisms of actions of thyroid hormone on the skeletal development. Bone Res 1:146–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xing W, Govoni KE, Donahue LR, Kesavan C, Wergedal J, Long C, Bassett JH, Gogakos A, Wojcicka A, Williams GR, Mohan S (2012) Genetic evidence that thyroid hormone is indispensable for prepubertal insulin-like growth factor-I expression and bone acquisition in mice. J Bone Miner Res 27:1067–1079

    Article  CAS  PubMed  Google Scholar 

  6. Schlesinger S, MacGillivray MH, Munschauer RW (1973) Acceleration of growth and bone maturation in childhood thyrotoxicosis. J Pediatr 83:233–236

    Article  CAS  PubMed  Google Scholar 

  7. Eriksen EF, Mosekilde L, Melsen F (1986) Kinetics of trabecular bone resorption and formation in hypothyroidism: evidence for a positive balance per remodeling cycle. Bone 7:101–108

    Article  CAS  PubMed  Google Scholar 

  8. Vestergaard P, Mosekilde L (2002) Fractures in patients with hyperthyroidism and hypothyroidism: a nationwide follow-up study in 16,249 patients. Thyroid 12:411–419

    Article  PubMed  Google Scholar 

  9. Vestergaard P, Rejnmark L, Weeke J, Mosekilde L (2000) Fracture risk in patients treated for hyperthyroidism. Thyroid 10:341–348

    Article  CAS  PubMed  Google Scholar 

  10. Ahmed LA, Schirmer H, Berntsen GK, Fonnebo V, Joakimsen RM (2006) Self-reported diseases and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int 17:46–53

    Article  PubMed  Google Scholar 

  11. Flynn RW, Bonellie SR, Jung RT, MacDonald TM, Morris AD, Leese GP (2010) Serum thyroid-stimulating hormone concentration and morbidity from cardiovascular disease and fractures in patients on long-term thyroxine therapy. J Clin Endocrinol Metab 95:186–193

    Article  CAS  PubMed  Google Scholar 

  12. Vestergaard P, Rejnmark L, Mosekilde L (2005) Influence of hyper- and hypothyroidism, and the effects of treatment with antithyroid drugs and levothyroxine on fracture risk. Calcif Tissue Int 77:139–144

    Article  CAS  PubMed  Google Scholar 

  13. Visser TJ (1996) Pathways of thyroid hormone metabolism. Acta Med Austriaca 23:10–16

    CAS  PubMed  Google Scholar 

  14. Bianco AC (2011) Minireview: cracking the metabolic code for thyroid hormone signaling. Endocrinology 152:3306–3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hulbert AJ (2000) Thyroid hormones and their effects: a new perspective. Biol Rev Camb Philos Soc 75:519–631

    Article  CAS  PubMed  Google Scholar 

  16. Wojcicka A, Bassett JH, Williams GR (2013) Mechanisms of action of thyroid hormones in the skeleton. Biochim Biophys Acta 1830:3979–3986

    Article  CAS  PubMed  Google Scholar 

  17. Lazar MA (1993) Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 14:184–193

    CAS  PubMed  Google Scholar 

  18. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  CAS  PubMed  Google Scholar 

  19. Mullur R, Liu YY, Brent GA (2014) Thyroid hormone regulation of metabolism. Physiol Rev 94:355–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Banovac K, Koren E (2000) Triiodothyronine stimulates the release of membrane-bound alkaline phosphatase in osteoblastic cells. Calcif Tissue Int 67:460–465

    Article  CAS  PubMed  Google Scholar 

  21. Varga F, Rumpler M, Luegmayr E, Fratzl-Zelman N, Glantschnig H, Klaushofer K (1997) Triiodothyronine, a regulator of osteoblastic differentiation: depression of histone H4, attenuation of c-fos/c-jun, and induction of osteocalcin expression. Calcif Tissue Int 61:404–411

    Article  CAS  PubMed  Google Scholar 

  22. Varga F, Rumpler M, Zoehrer R, Turecek C, Spitzer S, Thaler R, Paschalis EP, Klaushofer K (2010) T3 affects expression of collagen I and collagen cross-linking in bone cell cultures. Biochem Biophys Res Commun 402:180–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gouveia CH, Schultz JJ, Bianco AC, Brent GA (2001) Thyroid hormone stimulation of osteocalcin gene expression in ROS 17/2.8 cells is mediated by transcriptional and post-transcriptional mechanisms. J Endocrinol 170:667–675

    Article  CAS  PubMed  Google Scholar 

  24. Halperin Y, Shapiro LE, Surks MI (1991) Role of L-thyroxine in nuclear thyroid hormone receptor occupancy and growth hormone production in cultured GC cells. J Clin Invest 88:1291–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Horowitz ZD, Sahnoun H, Pascual A, Casanova J, Samuels HH (1988) Analysis of photoaffinity label derivatives to probe thyroid hormone receptor in human fibroblasts, GH1 cells, and soluble receptor preparations. J Biol Chem 263:6636–6642

    CAS  PubMed  Google Scholar 

  26. Sato K, Han DC, Fujii Y, Tsushima T, Shizume K (1987) Thyroid hormone stimulates alkaline phosphatase activity in cultured rat osteoblastic cells (ROS 17/2.8) through 3,5,3′-triiodo-L-thyronine nuclear receptors. Endocrinology 120:1873–1881

    Article  CAS  PubMed  Google Scholar 

  27. Sandler B, Webb P, Apriletti JW, Huber BR, Togashi M, Cunha Lima ST, Juric S, Nilsson S, Wagner R, Fletterick RJ, Baxter JD (2004) Thyroxine-thyroid hormone receptor interactions. J Biol Chem 279:55801–55808

    Article  CAS  PubMed  Google Scholar 

  28. Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ (2005) Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146:2864–2871

    Article  CAS  PubMed  Google Scholar 

  29. Williams AJ, Robson H, Kester MH, van Leeuwen JP, Shalet SM, Visser TJ, Williams GR (2008) Iodothyronine deiodinase enzyme activities in bone. Bone 43:126–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheng S, Zhao SL, Nelson B, Kesavan C, Qin X, Wergedal J, Mohan S, Xing W (2012) Targeted disruption of ephrin B1 in cells of myeloid lineage increases osteoclast differentiation and bone resorption in mice. PLoS One 7:e32887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Govoni KE, Linares GR, Chen ST, Pourteymoor S, Mohan S (2009) T-box 3 negatively regulates osteoblast differentiation by inhibiting expression of osterix and runx2. J Cell Biochem 106:482–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hernandez A, Martinez ME, Fiering S, Galton VA, St Germain D (2006) Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest 116:476–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hojo H, Ohba S, Yano F, Chung UI (2010) Coordination of chondrogenesis and osteogenesis by hypertrophic chondrocytes in endochondral bone development. J Bone Miner Metab 28:489–502

    Article  CAS  PubMed  Google Scholar 

  34. Wuelling M, Vortkamp A (2010) Transcriptional networks controlling chondrocyte proliferation and differentiation during endochondral ossification. Pediatr Nephrol 25:625–631

    Article  PubMed  Google Scholar 

  35. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    Article  CAS  PubMed  Google Scholar 

  36. Rumpler M, Woesz A, Varga F, Manjubala I, Klaushofer K, Fratzl P (2007) Three-dimensional growth behavior of osteoblasts on biomimetic hydroxyapatite scaffolds. J Biomed Mater Res A 81:40–50

    Article  CAS  PubMed  Google Scholar 

  37. Williams GR (2013) Thyroid hormone actions in cartilage and bone. Eur Thyroid J 2:3–13

    CAS  PubMed  Google Scholar 

  38. Lakatos P, Caplice MD, Khanna V, Stern PH (1993) Thyroid hormones increase insulin-like growth factor I content in the medium of rat bone tissue. J Bone Miner Res 8:1475–1481

    Article  CAS  PubMed  Google Scholar 

  39. Varga F, Rumpler M, Klaushofer K (1994) Thyroid hormones increase insulin-like growth factor mRNA levels in the clonal osteoblastic cell line MC3T3-E1. FEBS Lett 345:67–70

    Article  CAS  PubMed  Google Scholar 

  40. Varga F, Spitzer S, Rumpler M, Klaushofer K (2003) 1,25-Dihydroxyvitamin D3 inhibits thyroid hormone-induced osteocalcin expression in mouse osteoblast-like cells via a thyroid hormone response element. J Mol Endocrinol 30:49–57

    Article  CAS  PubMed  Google Scholar 

  41. Yoshimasa Y, Hamada S (1983) Thyroxine action on the rat liver nuclear thyroid-hormone receptors. Binding of thyroxine to the nuclear non-histone protein and induction of mitochondrial alpha-glycerophosphate dehydrogenase activity. Biochem J 210:331–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tuchendler D, Bolanowski M (2014) The influence of thyroid dysfunction on bone metabolism. Thyroid Res 7:12

    Article  PubMed  PubMed Central  Google Scholar 

  43. Davis PJ, Goglia F, Leonard JL (2015) Nongenomic actions of thyroid hormone. Nat Rev Endocrinol 12:111–121

    PubMed  Google Scholar 

  44. Davis FB, Cody V, Davis PJ, Borzynski LJ, Blas SD (1983) Stimulation by thyroid hormone analogues of red blood cell Ca2+-ATPase activity in vitro. Correlations between hormone structure and biological activity in a human cell system. J Biol Chem 258:12373–12377

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research work was performed at facilities provided by the Department of Veterans Affairs. This study was supported by funding from National Institutes of Health (NIH R01 048139) and from Veterans Administration Senior Research Career Scientist Award to SM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subburaman Mohan.

Ethics declarations

Conflict of interest

Shaohong Cheng, Weirong Xing, Sheila Pourteymoor, and Subburaman Mohan declare that they have no conflicts of interest or financial interest to disclose.

Ethical approval

This study was performed using an established mouse osteoblast cell line, MC3T3-E1, and was approved by the Research and Development Committee at VA Loma Linda Healthcare System.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Xing, W., Pourteymoor, S. et al. Effects of Thyroxine (T4), 3,5,3′-triiodo-l-thyronine (T3) and their Metabolites on Osteoblast Differentiation. Calcif Tissue Int 99, 435–442 (2016). https://doi.org/10.1007/s00223-016-0159-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0159-x

Keywords

Navigation