Skip to main content

Advertisement

Log in

Cytokine Receptor-Like Factor 1 is Highly Expressed in Damaged Human Knee Osteoarthritic Cartilage and Involved in Osteoarthritis Downstream of TGF-β

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is the most prevalent joint disease and is characterized by pain and functional loss of the joint. However, the pathogenic mechanism of OA remains unclear, and no drug therapy for preventing its progress has been established. To identify genes related to the progress of OA, the gene expression profiles of paired intact and damaged cartilage obtained from OA patients undergoing joint substitution were compared using oligo microarrays. Using functional categorization combined with gene ontology and a statistical analysis, five genes were found to be highly expressed in damaged cartilage (HBEGF, ASUS, CRLF1, LOX, CDA), whereas three genes were highly expressed in intact tissues (CHST2, PTPRD, CPAN6). Among these genes, the upregulated expression of CRLF1 was reconfirmed using real-time PCR, and the in vivo expression of CRLF1 was detected in clusters of chondrocytes and fibrocartilage-like cells in damaged OA cartilages using in situ hybridization. In vitro, the transcriptional level of CRLF1 was positively regulated by TGF-β1 in the mouse chondrogenic cell line ATDC5. Additionally, the CRLF1/CLC complex promoted the proliferation of ATDC5 cells and suppressed the expression level of aggrecan and type II collagen. Our data suggest that the CRLF1/CLC complex disrupts cartilage homeostasis and promotes the progress of OA by enhancing the proliferation of chondrocytes and suppressing the production of cartilage matrix. A component of the complex, CRLF1, may be useful as a biomarker of OA; and the corresponding receptor is a potential new drug target for OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Felson DT, Naimark A, Anderson J, Kazis L, Castelli W, Meenan RF (1987) The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 30:914–918

    Article  CAS  PubMed  Google Scholar 

  2. Elson GC, Graber P, Losberger C, Herren S, Gretener D, Menoud LN, Wells TN, Kosco-Vilbois MH, Gauchat JF (1998) Cytokine-like factor-1, a novel soluble protein, shares homology with members of the cytokine type I receptor family. J Immunol 161:1371–1379

    CAS  PubMed  Google Scholar 

  3. Elson GC, Lelievre E, Guillet C, Chevalier S, Plun-Favreau H, Froger J, Suard I, de Coignac AB, Delneste Y, Bonnefoy JY, Gauchat JF, Gascan H (2000) CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex. Nat Neurosci 3:867–872

    Article  CAS  PubMed  Google Scholar 

  4. Alexander WS, Rakar S, Robb L, Farley A, Willson TA, Zhang JG, Hartley L, Kikuchi Y, Kojima T, Nomura H, Hasegawa M, Maeda M, Fabri L, Jachno K, Nash A, Metcalf D, Nicola NA, Hilton DJ (1999) Suckling defect in mice lacking the soluble haemopoietin receptor NR6. Curr Biol 9:605–608

    Article  CAS  PubMed  Google Scholar 

  5. Knappskog PM, Majewski J, Livneh A, Nilsen PT, Bringsli JS, Ott J, Boman H (2003) Cold-induced sweating syndrome is caused by mutations in the CRLF1 gene. Am J Hum Genet 72:375–383

    Article  CAS  PubMed  Google Scholar 

  6. Crisponi L, Crisponi G, Meloni A, Toliat MR, Nurnberg G et al (2007) Crisponi syndrome is caused by mutations in the CRLF1 gene and is allelic to cold-induced sweating syndrome type 1. Am J Hum Genet 80:971–981

    Article  CAS  PubMed  Google Scholar 

  7. Clancy BM, Johnson JD, Lambert AJ, Rezvankhah S, Wong A, Resmini C, Feldman JL, Leppanen S, Pittman DD (2003) A gene expression profile for endochondral bone formation: oligonucleotide microarrays establish novel connections between known genes and BMP-2-induced bone formation in mouse quadriceps. Bone 33:46–63

    Article  CAS  PubMed  Google Scholar 

  8. Tew SR, Clegg PD, Brew CJ, Redmond CM, Hardingham TE (2007) SOX9 transduction of a human chondrocytic cell line identifies novel genes regulated in primary human chondrocytes and in osteoarthritis. Arthritis Res Ther 9:R107

    Article  PubMed  CAS  Google Scholar 

  9. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  10. Wu Z, Irizarry RA, Gentleman R, Murillo FM, Spencer F (2004) A model based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 99:909–917

    Article  Google Scholar 

  11. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  Google Scholar 

  12. Vincent S, Marty L, Fort P (1993) S26 ribosomal protein RNA: an invariant control for gene regulation experiments in eucaryotic cells and tissues. Nucleic Acids Res 21:1498

    Article  CAS  PubMed  Google Scholar 

  13. Ishii A, Nakamura M, Nakamura A, Kimura M, Kakudo K (2004) Localization of calcitonin receptor mRNA in rat kidney: an in situ hybridization study. Acta Histochem Cytochem 37:259–265

    Article  CAS  Google Scholar 

  14. Wahl M, Shukunami C, Heinzmann U, Hamajima K, Hiraki Y, Imai K (2004) Transcriptome analysis of early chondrogenesis in ATDC5 cells induced by bone morphogenetic protein 4. Genomics 83:45–58

    Article  CAS  PubMed  Google Scholar 

  15. Kizawa H, Kou I, Iida A, Sudo A, Miyamoto Y, Fukuda A, Mabuchi A, Kotani A, Kawakami A, Yamamoto S, Uchida A, Nakamura K, Notoya K, Nakamura Y, Ikegawa S (2005) An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat Genet 37:138–144

    Article  CAS  PubMed  Google Scholar 

  16. Yuasa T, Otani T, Koike T, Iwamoto M, Enomoto-Iwamoto M (2008) Wnt/beta-catenin signaling stimulates matrix catabolic genes and activity in articular chondrocytes: its possible role in joint degeneration. Lab Invest 88:264–274

    Article  CAS  PubMed  Google Scholar 

  17. Shakibaei M, Csaki C, Nebrich S, Mobasheri A (2008) Resveratrol suppresses interleukin-1beta-induced inflammatory signaling and apoptosis in human articular chondrocytes: potential for use as a novel nutraceutical for the treatment of osteoarthritis. Biochem Pharmacol 76:1426–1439

    Article  CAS  PubMed  Google Scholar 

  18. MacRae VE, Farquharson C, Ahmed SF (2006) The restricted potential for recovery of growth plate chondrogenesis and longitudinal bone growth following exposure to pro-inflammatory cytokines. J Endocrinol 189:319–328

    Article  CAS  PubMed  Google Scholar 

  19. Fukui N, Ikeda Y, Ohnuki T, Hikita A, Tanaka S, Yamane S, Suzuki R, Sandell LJ, Ochi T (2006) Pro-inflammatory cytokine tumor necrosis factor-alpha induces bone morphogenetic protein-2 in chondrocytes via mRNA stabilization and transcriptional up-regulation. J Biol Chem 281:27229–27241

    Article  CAS  PubMed  Google Scholar 

  20. Chowdhury TT, Bader DL, Lee DA (2006) Anti-inflammatory effects of IL-4 and dynamic compression in IL-1beta stimulated chondrocytes. Biochem Biophys Res Commun 339:241–247

    Article  CAS  PubMed  Google Scholar 

  21. Amin AR, Attur M, Patel RN, Thakker GD, Marshall PJ, Rediske J, Stuchin SA, Patel IR, Abramson SB (1997) Superinduction of cyclooxygenase-2 activity in human osteoarthritis-affected cartilage. Influence of nitric oxide. J Clin Invest 99:1231–1237

    Article  CAS  PubMed  Google Scholar 

  22. Zafarullah M, Martel-Pelletier J, Cloutier JM, Gedamu L, Pelletier JP (1992) Expression of c-fos, c-jun, jun-B, metallothionein and metalloproteinase genes in human chondrocyte. FEBS Lett 306:169–172

    Article  CAS  PubMed  Google Scholar 

  23. Mix KS, Attur MG, Al-Mussawir H, Abramson SB, Brinckerhoff CE, Murphy EP (2007) Transcriptional repression of matrix metalloproteinase gene expression by the orphan nuclear receptor NURR1 in cartilage. J Biol Chem 282:9492–9504

    Article  CAS  PubMed  Google Scholar 

  24. Das H, Kumar A, Lin Z, Patino WD, Hwang PM, Feinberg MW, Majumder PK, Jain MK (2006) Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc Natl Acad Sci USA 103:6653–6658

    Article  CAS  PubMed  Google Scholar 

  25. Cameron TL, Belluoccio D, Farlie PG, Brachvogel B, Bateman JF (2009) Global comparative transcriptome analysis of cartilage formation in vivo. BMC Dev Biol 9:20

    Article  PubMed  CAS  Google Scholar 

  26. Chang Y, Ueng SW, Lin-Chao S, Chao CC (2008) Involvement of Gas7 along the ERK1/2 MAP kinase and SOX9 pathway in chondrogenesis of human marrow-derived mesenchymal stem cells. Osteoarthritis Cartilage 16:1403–1412

    Article  CAS  PubMed  Google Scholar 

  27. Capdevila J, Tsukui T, Rodriquez Esteban C, Zappavigna V, Izpisua Belmonte JC (1999) Control of vertebrate limb outgrowth by the proximal factor Meis2 and distal antagonism of BMPs by Gremlin. Mol Cell 4:839–849

    Article  CAS  PubMed  Google Scholar 

  28. Miyamoto S, Yagi H, Yotsumoto F, Horiuchi S, Yoshizato T, Kawarabayashi T, Kuroki M, Mekada E (2007) New approach to cancer therapy: heparin binding-epidermal growth factor-like growth factor as a novel targeting molecule. Anticancer Res 27:3713–3721

    CAS  PubMed  Google Scholar 

  29. Lorenzi PL, Weinstein JN (2009) Asparagine synthetase: a new potential biomarker in ovarian cancer. Drug News Perspect 22:61–64

    Article  PubMed  Google Scholar 

  30. Lucero HA, Kagan HM (2006) Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci 63:2304–2316

    Article  CAS  PubMed  Google Scholar 

  31. Saxne T, Lecander I, Geborek P (1993) Plasminogen activators and plasminogen activator inhibitors in synovial fluid. Difference between inflammatory joint disorders and osteoarthritis. J Rheumatol 20:91–96

    CAS  PubMed  Google Scholar 

  32. Li X, Tu L, Murphy PG, Kadono T, Steeber DA, Tedder TF (2001) CHST1 and CHST2 sulfotransferase expression by vascular endothelial cells regulates shear-resistant leukocyte rolling via l-selectin. J Leukoc Biol 69:565–574

    CAS  PubMed  Google Scholar 

  33. Pulido R, Krueger NX, Serra-Pages C, Saito H, Streuli M (1995) Molecular characterization of the human transmembrane protein-tyrosine phosphatase delta. Evidence for tissue-specific expression of alternative human transmembrane protein-tyrosine phosphatase delta isoforms. J Biol Chem 270:6722–6728

    Article  CAS  PubMed  Google Scholar 

  34. Tonami K, Kurihara Y, Aburatani H, Uchijima Y, Asano T, Kurihara H (2007) Calpain 6 is involved in microtubule stabilization and cytoskeletal organization. Mol Cell Biol 27:2548–2561

    Article  CAS  PubMed  Google Scholar 

  35. Atsumi T, Miwa Y, Kimata K, Ikawa Y (1990) A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells. Cell Differ Dev 30:109–116

    Article  CAS  PubMed  Google Scholar 

  36. Han F, Adams CS, Tao Z, Williams CJ, Zaka R, Tuan RS, Norton PA, Hickok NJ (2005) Transforming growth factor-beta1 (TGF-beta1) regulates ATDC5 chondrogenic differentiation and fibronectin isoform expression. J Cell Biochem 95:750–762

    Article  CAS  PubMed  Google Scholar 

  37. Hardy MM, Seibert K, Manning PT, Currie MG, Woerner BM, Edwards D, Koki A, Tripp CS (2002) Cyclooxygenase 2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation in human osteoarthritis explants. Arthritis Rheum 46:1789–1803

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Ellman M, Muddasani P, Wang JH, Cs-Szabo G, van Wijnen AJ, Im HJ (2009) Prostaglandin E2 and its cognate EP receptors control human adult articular cartilage homeostasis and are linked to the pathophysiology of osteoarthritis. Arthritis Rheum 60:513–523

    Article  CAS  PubMed  Google Scholar 

  39. Sato T, Konomi K, Yamasaki S, Aratani S, Tsuchimochi K, Yokouchi M, Masuko-Hongo K, Yagishita N, Nakamura H, Komiya S, Beppu M, Aoki H, Nishioka K, Nakajima T (2006) Comparative analysis of gene expression profiles in intact and damaged regions of human osteoarthritic cartilage. Arthritis Rheum 54:808–817

    Article  CAS  PubMed  Google Scholar 

  40. Mankin HJ, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 53:523–537

    CAS  PubMed  Google Scholar 

  41. Poole CA (1997) Articular cartilage chondrons: form, function and failure. J Anat 191:1–13

    Article  PubMed  Google Scholar 

  42. Schlaak JF, Pfers I, Meyer Zum Buschenfelde KH, Marker-Hermann E (1996) Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies. Clin Exp Rheumatol 14:155–162

    CAS  PubMed  Google Scholar 

  43. van Beuningen HM, Glansbeek HL, van der Kraan PM, van den Berg WB (2000) Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections. Osteoarthritis Cartilage 8:25–33

    Article  PubMed  Google Scholar 

  44. Lelievre E, Plun-Favreau H, Chevalier S, Froger J, Guillet C, Elson GC, Gauchat JF, Gascan H (2001) Signaling pathways recruited by the cardiotrophin-like cytokine/cytokine-like factor-1 composite cytokine: specific requirement of the membrane-bound form of ciliary neurotrophic factor receptor alpha component. J Biol Chem 276:22476–22484

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Tetsuji Otsuki and Yusuke Kuwahara for their contributions to the microarray experiment; Chikako Tomatsu, Mika Matsuzaki, Sachie Kobayashi, and Saori Onda for their assistance with the cell cultures and real-time PCR experiment; and Drs. Noboru Otsuka, Takanobu Sakurai, and Toshi Komurasaki for advice and discussions regarding the experiments. We are also grateful to Drs. Sigeru Okuyama and Kunihiro Kitamura for their continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuki Tsuritani.

Additional information

The authors have stated that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuritani, K., Takeda, J., Sakagami, J. et al. Cytokine Receptor-Like Factor 1 is Highly Expressed in Damaged Human Knee Osteoarthritic Cartilage and Involved in Osteoarthritis Downstream of TGF-β. Calcif Tissue Int 86, 47–57 (2010). https://doi.org/10.1007/s00223-009-9311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9311-1

Keywords

Navigation