Skip to main content
Log in

Effect of the Vitamin D Receptor on Bone Geometry and Strength During Gestation and Lactation in Mice

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The vitamin D receptor (VDR) plays an important role in maintaining calcium homeostasis, acting as a mediator of transcellular calcium absorption and bone remodeling. Mice lacking a functional VDR have an abnormal skeletal phenotype, which is rescued by feeding a high-calcium diet. In this study, the role of the VDR in maintaining bone geometry and strength during gestation and lactation, when increased demands are placed on the calcium regulatory channels, was examined using a knockout mouse model. A rescue diet was used to counteract the decrease in calcium absorption in the gut that results from the absence of the VDR. Structural and compositional characteristics of the femur were compared between VDR knockout and wild-type mice following 9 and 16 days of gestation and 5 and 10 days of lactation using generalized linear models. Overall, the knockout mice had 6.5% lower cortical area, 23% lower trabecular volume fraction, and 9% lower bending stiffness than wild-type mice. However, the maximum moment of inertia of the femoral diaphyses, ultimate bending load, ash fraction, and trabecular thickness were not significantly different between knockout and wild-type mice. Only the mineral content exhibited interdependence between genotype and time point. Taken together, the results show that the VDR affects the quantity of mineralized bone tissue in the femoral diaphysis and metaphysis independently of reproductive status. However, the moments of inertia were similar between genotypes, resulting in similar bone stiffness and strength despite lower mineral content and cross-sectional area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Garabedian M, Tanaka Y, Holick MF, Deluca HF (1974) Response of intestinal calcium transport and bone calcium mobilization to 1, 25-dihydroxyvitamin D3 in thyroparathyroidectomized rats. Endocrinology 94:1022–1027

    Article  CAS  PubMed  Google Scholar 

  2. Matsumoto T, Igarashi C, Takeuchi Y, Harada S, Kikuchi T, Yamato H, Ogata E (1991) Stimulation by 1,25-dihydroxyvitamin D3 of in vitro mineralization induced by osteoblast-like MC3T3-E1 cells. Bone 12:27–32

    Article  CAS  PubMed  Google Scholar 

  3. Takeda S, Yoshizawa T, Nagai Y, Yamato H, Fukumoto S, Sekine K, Kato S, Matsumoto T, Fujita T (1999) Stimulation of osteoclast formation by 1,25-dihydroxyvitamin D requires its binding to vitamin D receptor (VDR) in osteoblastic cells: studies using VDR knockout mice. Endocrinology 140:1005–1008

    Article  CAS  PubMed  Google Scholar 

  4. Haussler MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD, Selznick SH, Dominguez CE, Jurutka PW (1998) The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 13:325–349

    Article  CAS  PubMed  Google Scholar 

  5. Norman AW (1990) Intestinal calcium absorption: a vitamin D-hormone-mediated adaptive response. Am J Clin Nutr 51:290–300

    CAS  PubMed  Google Scholar 

  6. Bronner F (2003) Mechanisms of intestinal calcium absorption. J Cell Biochem 88:387–393

    Article  CAS  PubMed  Google Scholar 

  7. Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S, Bindels RJ, Collen D, Carmeliet P, Bouillon R, Carmeliet G (2001) Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc Natl Acad Sci USA 98:13324–13329

    Article  PubMed  Google Scholar 

  8. Li YC, Bolt MJ, Cao LP, Sitrin MD (2001) Effects of vitamin D receptor inactivation on the expression of calbindins and calcium metabolism. Am J Physiol Endocrinol Metab 281:E558–E564

    CAS  PubMed  Google Scholar 

  9. An BS, Choi KC, Kang SK, Lee GS, Hong EJ, Hwang WS, Jeung EB (2003) Mouse calbindin-D(9k) gene expression in the uterus during late pregnancy and lactation. Mol Cell Endocrinol 205:79–88

    Article  CAS  PubMed  Google Scholar 

  10. Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, Demay MB (1999) Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140:4982–4987

    Article  CAS  PubMed  Google Scholar 

  11. Olausson H, Laskey MA, Goldberg GR, Prentice A (2008) Changes in bone mineral status and bone size during pregnancy and the influences of body weight and calcium intake. Am J Clin Nutr 88:1032–1039

    CAS  PubMed  Google Scholar 

  12. Prentice A (2000) Calcium in pregnancy and lactation. Annu Rev Nutr 20:249–272

    Article  CAS  PubMed  Google Scholar 

  13. Brommage R, DeLuca HF (1985) Regulation of bone mineral loss during lactation. Am J Physiol Endocrinol Metab 248:E182–E187

    CAS  Google Scholar 

  14. Halloran BP, DeLuca HF (1980) Skeletal changes during pregnancy and lactation: the role of vitamin D. Endocrinology 107:1923–1929

    Article  CAS  PubMed  Google Scholar 

  15. Ward KA, Adams JE, Mughal MZ (2005) Bone status during adolescence, pregnancy and lactation. Curr Opin Obstet Gynecol 17:435–439

    Article  PubMed  Google Scholar 

  16. Kalkwarf HJ (1999) Hormonal and dietary regulation of changes in bone density during lactation and after weaning in women. J Mammary Gland Biol Neoplasia 4:319–329

    Article  CAS  PubMed  Google Scholar 

  17. Bezerra FF, Cabello GM, Mendonca LM, Donangelo CM (2008) Bone mass and breast milk calcium concentration are associated with vitamin D receptor gene polymorphisms in adolescent mothers. J Nutr 138:277–281

    CAS  PubMed  Google Scholar 

  18. Miller SC, Halloran BP, DeLuca HF, Jee WS (1982) Role of vitamin D in maternal skeletal changes during pregnancy and lactation: a histomorphometric study. Calcif Tissue Int 34:245–252

    Article  CAS  PubMed  Google Scholar 

  19. Marie PJ, Cancela L, Le Boulch N, Miravet L (1986) Bone changes due to pregnancy and lactation: influence of vitamin D status. Am J Physiol Endocrinol Metab 251:E400–E406

    CAS  Google Scholar 

  20. Zeni SN, Di Gregorio S, Mautalen C (1999) Bone mass changes during pregnancy and lactation in the rat. Bone 25:681–685

    Article  CAS  PubMed  Google Scholar 

  21. Song Y, Kato S, Fleet JC (2003) Vitamin D receptor (VDR) knockout mice reveal VDR-independent regulation of intestinal calcium absorption and ECaC2 and calbindin D9k mRNA. J Nutr 133:374–380

    CAS  PubMed  Google Scholar 

  22. Rummens K, van Cromphaut SJ, Carmeliet G, van Herck E, van Bree R, Stockmans I, Bouillon R, Verhaeghe J (2003) Pregnancy in mice lacking the vitamin D receptor: normal maternal skeletal response, but fetal hypomineralization rescued by maternal calcium supplementation. Pediatr Res 54:466–473

    Article  CAS  PubMed  Google Scholar 

  23. Li YC, Pirro AE, Amling M, Delling G, Baron R, Bronson R, Demay MB (1997) Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci USA 94:9831–9835

    Article  CAS  PubMed  Google Scholar 

  24. Johnson LE, DeLuca HF (2001) Vitamin D receptor null mutant mice fed high levels of calcium are fertile. J Nutr 131:1787–1791

    CAS  PubMed  Google Scholar 

  25. Johnson LE, DeLuca HF (2002) Reproductive defects are corrected in vitamin D-deficient female rats fed a high calcium, phosphorus and lactose diet. J Nutr 132:2270–2273

    CAS  PubMed  Google Scholar 

  26. Zinser GM, Welsh J (2004) Accelerated mammary gland development during pregnancy and delayed postlactational involution in vitamin D3 receptor null mice. Mol Endocrinol 18:2208–2223

    Article  CAS  PubMed  Google Scholar 

  27. Boskey AL (2001) Bone mineralization. In: Cowin SC (ed) Bone mechanics handbook. CRC, Boca Raton, FL, pp 5.1–5.33

    Google Scholar 

  28. Russo CR, Lauretani F, Seeman E, Bartali B, Bandinelli S, Di Iorio A, Guralnik J, Ferrucci L (2006) Structural adaptations to bone loss in aging men and women. Bone 38:112–118

    Article  PubMed  Google Scholar 

  29. Buckwalter JA, Glimcher MJ, Cooper RR, Recker R (1996) Bone biology. II: Formation, form, modeling, remodeling, and regulation of cell function. Instr Course Lect 45:387–399

    CAS  PubMed  Google Scholar 

  30. Keshawarz NM, Recker RR (1984) Expansion of the medullary cavity at the expense of cortex in postmenopausal osteoporosis. Metab Bone Dis Relat Res 5:223–228

    Article  CAS  PubMed  Google Scholar 

  31. Keller TS, Spengler DM (1989) Regulation of bone stress and strain in the immature and mature rat femur. J Biomech 22:1115–1127

    Article  CAS  PubMed  Google Scholar 

  32. Thomsen JS, Mosekilde L, Boyce RW, Mosekilde E (1994) Stochastic simulation of vertebral trabecular bone remodeling. Bone 15:655–666

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen L. Niebur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korecki, C.L., Zinser, G., Liu, X. et al. Effect of the Vitamin D Receptor on Bone Geometry and Strength During Gestation and Lactation in Mice. Calcif Tissue Int 85, 405–411 (2009). https://doi.org/10.1007/s00223-009-9281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9281-3

Keywords

Navigation