Skip to main content

Advertisement

Log in

Peritubular Dentin, a Vertebrate Apatitic Mineralized Tissue without Collagen: Role of a Phospholipid-Proteolipid Complex

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Peritubular dentin (PTD), a highly mineralized annular ring surrounding each odontoblastic process within the dentin, is an enigmatic component in vertebrate teeth. To characterize its structure and composition, we have coupled in situ scanning electron microscopic (SEM) and time-of-flight secondary ion mass spectrometric (TOF-SIMS) analysis of the surface composition of intact bovine coronal dentin with the isolation of intact PTD from hypochlorite-treated dentin and its subsequent TOF-SIMS and direct chemical analysis. The isolated PTD is shown to be a mineralized but porous structure complexed with a high-molecular mass calcium-proteolipid-phospholipid-phosphate complex, which cannot be extracted from the dentin prior to demineralization. The TOF-SIMS and direct amino acid analysis data confirm that the PTD protein is rich in glutamic acid but does not contain collagen. Phosphatidylcholine, phosphatidylserine, and phosphatidylinositol are present, along with a mannose-rich glycan and chondroitin-4- and chondroitin-6-sulfate glycosaminoglycans. PTD apatite, well described in the literature, must therefore form in this noncollagenous proteolipid-phospholipid complex without the intervention of collagen; nevertheless, as shown by SEM, the apatite is formed in small platy crystals, as in the bulk of the intertubular dentin (ITD). We hypothesize that the porous nature of the PTD and its proteolipid-phospholipid complexes may be involved in regulating communication between the ITD and internal PTD tubule fluids and the odontoblasts, similar to the involvement of such lipid complexes in neural, brain, and nuclear transport functions. Thus, the PTD should not be considered solely as a passive structural element in some teeth but as part of the system that allows for the vital function of the dentin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goracci G, Mori G, Casa de’Martinis L, Bazzucchi M (1993) Analisi ultrastructurale della dentina peritubulare e del lume tubulare di denti sani. Minerva Stomatol 42:205–216

    PubMed  CAS  Google Scholar 

  2. Rabie AM, Veis A (1995) An immunocytochemical study of the routes of secretion of collagen and phosphophoryn from odontoblasts. Connect Tissue Res 31:197–209

    PubMed  CAS  Google Scholar 

  3. Moriguchi M, Yamada M, Yanagisawa T (1998) Immunochemistry of proteoglycan in dentin and odontoblasts. J Anat (Japan) 73:239–245

    CAS  Google Scholar 

  4. Goracci G, Mori G, Marci F, Baldi M (1999) Extent of the odontoblastic process. Analysis by SEM and confocal microscopy. Minerva Stomatol 48:1–8

    PubMed  CAS  Google Scholar 

  5. Hirayama A (1990) Experimental analytical electron microscopic studies on the quantitative analysis of elemental concentrations in biological thin specimens and its application to dental science [in Japanese]. Shikawa Gakuho 90:1019–1036

    CAS  Google Scholar 

  6. Weiner S, Veis A, Beniash E, Arad T, Dillon JW, Sabsay B, Siddiqui F (1999) Peritubular dentin formation: crystal organization and the macromolecular constituents in human teeth. J Struct Biol 126:27–41

    Article  PubMed  CAS  Google Scholar 

  7. Magne D, Guicheux J, Weiss P, Pilet P, Daculsi G (2002) Fourier transform infrared microspectroscopic investigation of the organic and mineral constituents of peritubular dentin: a horse study. Calcif Tissue Int 71:179–185

    Article  PubMed  CAS  Google Scholar 

  8. Goldberg M, Molon Noblot M, Septier D (1980) Effect of 2 methods of demineralization on the preservation of glycoproteins and proteoglycans in the intertubular and peritubular dentin in the horse. J Biol Buccale 8:315–330

    PubMed  CAS  Google Scholar 

  9. Kinney JH, Balooch M, Marshall SJ, Marshall GW Jr, Weihs TP (1996) Atomic force microscope measurements of the hardness and elasticity of peritubular and intertubular human dentin. J Biomech Eng 118:133–135

    PubMed  CAS  Google Scholar 

  10. Iwamoto N, Ruse ND (2003) Fracture toughness of human dentin. J Biomed Mater Res A 66:507–512

    Article  PubMed  Google Scholar 

  11. Wang R (2005) Anisotropic fracture in bovine root and coronal dentin. Dent Mater 21:429–436

    Article  PubMed  CAS  Google Scholar 

  12. Gotliv B-A, Robach JS, Veis A (2006) The composition and structure of bovine peritubular dentin: mapping by time of flight secondary ion mass spectroscopy. J Struct Biol 156:320–333

    Article  PubMed  CAS  Google Scholar 

  13. Mantus DS, Ratner BD, Carlson BA, Moulder JF (1993) Static secondary ion mass spectrometry of adsorbed proteins. Anal Chem 65:1431–1438

    Article  PubMed  CAS  Google Scholar 

  14. Samuel NT, Wagner MS, Dornfeld KD, Castner DG (2001) Analysis of poly(amino acids) by static time-of-flight secondary ion mass spectrometry (TOF-SIMS). Surf Sci Spectra 8:163–184

    Article  CAS  Google Scholar 

  15. Dambach S, Fartmann M, Kriegeskotte CCB, Hellweg S, Wiesmann H, Lipinsky D, Arlinghaus HF (2004) ToF-SIMS and laser-SNMS analysis of apatite formation in extracellular protein matrix of osteoblasts in vitro. Surface Interface Anal 36:711–715

    Article  CAS  Google Scholar 

  16. Ostrowski SG, Szakal C, Kozole J, Roddy TP, Xu J, Ewing AG, Winograd N (2005) Secondary ion MS imaging of lipids in picoliter vials with a buckminsterfullerene ion source. Anal Chem 77:6190–6196

    Article  PubMed  CAS  Google Scholar 

  17. Myers JM, Veis A, Sabsay B, Wheeler AP (1996) A method for enhancing the sensitivity and stability of Stains-all for phosphoproteins separated in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 240:300–302

    Article  PubMed  CAS  Google Scholar 

  18. Gotliv BA, Addadi L, Weiner S (2003) Mollusk shell acidic proteins: in search of individual functions. Chembiochem 4:522–529

    Article  PubMed  CAS  Google Scholar 

  19. Teichman RJ, Cummins JM, Takei GH (1974) The characterization of a malachite green stainable, glutaraldehyde extractable phospholipid in rabbit spermatozoa. Biol Reprod 10:565–577

    Article  PubMed  CAS  Google Scholar 

  20. Varelas JB, Zenarosa NR, Froelich CJ (1991) Agarose/polyacrylamide minislab gel electrophoresis of intact cartilage proteoglycans and their proteolytic degradation products. Anal Biochem 197:396–400

    Article  PubMed  CAS  Google Scholar 

  21. Goldberg M, Boskey AL (1996) Lipids and biomineralizations. Prog Histochem Cytochem 31:1–187

    PubMed  Google Scholar 

  22. Wuthier RE (1968) Lipids of mineralizing epiphyseal tissues in the bovine fetus. J Lipid Res 9:68–78

    PubMed  CAS  Google Scholar 

  23. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  24. Goldberg M, Septier D, Lécolle S, Vermilen L, Bassila-Mapahou P, Carreau JP, Gritli A, Bloch-Zupan A (1995) Lipids in predentine and dentine. Connect Tissue Res 33:105–114

    PubMed  CAS  Google Scholar 

  25. Wu LNY, Genge BR, Kang MW, Arsenault AL, Wuthier RW (2002) Changes in phospholipid extractability and composition accompany mineralization of chicken growth plate cartilage matrix vesicles. J Biol Chem 277:5126–5133

    Article  PubMed  CAS  Google Scholar 

  26. Takuma S (1960) Electron microscopy of the structure around the dentinal tubule. J Dent Res 39:973–981

    PubMed  CAS  Google Scholar 

  27. Beniash E, Traub W, Veis A, Weiner S (2000) A transmission electron microscope study using vitrified ice sections of predentin: structural changes in the dentin collagenous matrix prior to mineralization. J Struct Biol 132:212–225

    Article  PubMed  CAS  Google Scholar 

  28. Shapiro IM, Wuthier RE, Irving JT (1966) A study of the phospholipids of bovine dental tissues. I. Enamel matrix and dentine. Arch Oral Biol 11:501–512

    Article  PubMed  CAS  Google Scholar 

  29. Shapiro IM, Wuthier RE (1966) A study of the phospholipids of bovine dental tissues. II. Developing bovine foetal dental pulp. Arch Oral Biol 11:513–519

    Article  PubMed  CAS  Google Scholar 

  30. Irving JT, Wuthier RE (1968) Histochemistry and biochemistry of calcification with special reference to the role of lipids. Clin Orthop 56:237–260

    PubMed  CAS  Google Scholar 

  31. Bonucci E (1967) Fine structure of early cartilage calcification. J Ultrastruct Res 20:33–50

    Article  PubMed  CAS  Google Scholar 

  32. Peress NS, Anderson HC, Sajdera SW (1974) The lipids of matrix vesicles from bovine fetal epiphyseal cartilage. Calcif Tissue Res 14:275–282

    Article  PubMed  CAS  Google Scholar 

  33. Wuthier RE (1975) Lipid composition of isolated epiphyseal cartilage cells, membranes and matrix vesicles. Biochim Biophys Acta Lipids Lipid Metab 409:128–143

    Article  CAS  Google Scholar 

  34. Boyan-Salyers BD, Boskey AL (1980) Relationship between proteolipids and calcium-phospholipid-phosphate complexes in Bacterionema matruchotii calcification. Calcif Tissue Int 30:167–174

    Article  PubMed  CAS  Google Scholar 

  35. van Dijk S, Dean DD, Liu Y, Zhao Y, Chirgwin JM, Schwartz Z, Boyan BD (1998) Purification, amino acid sequence, and cDNA sequence of a novel calcium-precipitating proteolipid involved in calcification of Corynebacterium matruchotii. Calcif Tissue Int 62:350–358

    Article  PubMed  Google Scholar 

  36. Zabelinskii SA, Pomazanskaia LF, Chirkovskaia EV (1984) Brain proteolipids in representatives of different vertebrate classes [in Russian]. Zh Evol Biokhim Fiziol 20:239–245

    PubMed  CAS  Google Scholar 

  37. Turner N, Else PL, Hulbert AJ (2005) An allometric comparison of microsomal membrane lipid composition and sodium pump molecular activity in the brain of mammals and birds. J Exp Biol 208:371–381

    Article  PubMed  CAS  Google Scholar 

  38. Irvine RF (2002) Nuclear lipid signaling. Science's Stke: Signal Transduction Knowledge Environment 2002(150):RE13

Download references

Acknowledgements

This work was supported by grant DE-01374 (to A. V.) from the National Institute for Dental and Craniofacial Research. We appreciate the helpful critical comments on the manuscript by Dr. Stephen Weiner (Weizmann Institute of Science) and the generous advice and assistance of Dr. Jayme Borensztajn (Pathology Department, Feinberg School of Medicien, Northwestern University, Chicago, IL) in the lipid analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Veis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotliv, BA., Veis, A. Peritubular Dentin, a Vertebrate Apatitic Mineralized Tissue without Collagen: Role of a Phospholipid-Proteolipid Complex. Calcif Tissue Int 81, 191–205 (2007). https://doi.org/10.1007/s00223-007-9053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9053-x

Keywords

Navigation