Skip to main content
Log in

Quantum Pieri rules for isotropic Grassmannians

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology ring of these varieties, which give a combinatorial formula for the product of any Schubert class with certain special Schubert classes. We also give presentations of these rings, with integer coefficients, in terms of special Schubert class generators and relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergeron, N., Sottile, F.: A Pieri-type formula for isotropic flag manifolds. Trans. Am. Math. Soc. 354, 4815–4829 (2002)

    Article  Google Scholar 

  2. Bertram, A.: Quantum Schubert calculus. Adv. Math. 128, 289–305 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math. (2) 57, 115–207 (1953)

    Article  MathSciNet  Google Scholar 

  4. Buch, A.S.: Quantum cohomology of Grassmannians. Compos. Math. 137, 227–235 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buch, A.S., Kresch, A., Tamvakis, H.: Gromov-Witten invariants on Grassmannians. J. Am. Math. Soc. 16, 901–915 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buch, A.S., Kresch, A., Tamvakis, H.: A Giambelli formula for isotropic Grassmannians. Preprint (2008), available at arXiv:0811.2781

  7. Deodhar, V.V.: On some geometric aspects of Bruhat orderings, I: A finer decomposition of Bruhat cells. Invent. Math. 79, 499–511 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dieudonné, J., Grothendieck, A.: Éléments de géométrie algébrique IV: Étude locale des schémas et des morphismes de schémas. Publ. Math. I.H.E.S. 20, 24, 28, 32 (1964–1967)

  9. Fulton, W., Pandharipande, R.: Notes on stable maps and quantum cohomology. In: Algebraic Geometry, Santa Cruz, 1995. Proc. Sympos. Pure Math., Part 2, vol. 62, pp. 45–96. Am. Math. Soc., Providence (1997)

    Google Scholar 

  10. Hiller, H., Boe, B.: Pieri formula for SO 2n+1/U n and Sp n /U n . Adv. Math. 62, 49–67 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hodge, W.V.D.: The intersection formulae for a Grassmannian variety. J. Lond. Math. Soc. 17, 48–64 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kresch, A., Tamvakis, H.: Quantum cohomology of the Lagrangian Grassmannian. J. Algebraic Geom. 12, 777–810 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Kresch, A., Tamvakis, H.: Quantum cohomology of orthogonal Grassmannians. Compos. Math. 140, 482–500 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu, Q.: Algebraic Geometry and Arithmetic Curves. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  15. Pragacz, P., Ratajski, J.: A Pieri-type theorem for Lagrangian and odd orthogonal Grassmannians. J. Reine Angew. Math. 476, 143–189 (1996)

    MATH  MathSciNet  Google Scholar 

  16. Pragacz, P., Ratajski, J.: A Pieri-type formula for even orthogonal Grassmannians. Fundam. Math. 178, 49–96 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sertöz, S.: A triple intersection theorem for the varieties SO(n)/P d . Fundam. Math. 142, 201–220 (1993)

    MATH  Google Scholar 

  18. Siebert, B., Tian, G.: On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator. Asian J. Math. 1, 679–695 (1997)

    MATH  MathSciNet  Google Scholar 

  19. Sottile, F.: Pieri-type formulas for maximal isotropic Grassmannians via triple intersections. Colloq. Math. 82, 49–63 (1999)

    MATH  MathSciNet  Google Scholar 

  20. Stanley, R.: Hilbert functions of graded algebras. Adv. Math. 28, 57–83 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tamvakis, H.: Quantum cohomology of isotropic Grassmannians. In: Geometric Methods in Algebra and Number Theory. Progress in Math., vol. 235, pp. 311–338. Birkhäuser, Basel (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Tamvakis.

Additional information

The authors were supported in part by NSF Grant DMS-0603822 (Buch), the Swiss National Science Foundation (Kresch), and NSF Grants DMS-0401082 and DMS-0639033 (Tamvakis).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buch, A.S., Kresch, A. & Tamvakis, H. Quantum Pieri rules for isotropic Grassmannians. Invent. math. 178, 345–405 (2009). https://doi.org/10.1007/s00222-009-0201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-009-0201-y

Mathematics Subject Classification (2000)

Navigation