Skip to main content
Log in

Mood induction effects on motor sequence learning and stop signal reaction time

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The neurobiological theory of positive affect proposes that positive mood states may benefit cognitive performance due to an increase of dopamine throughout the brain. However, the results of many positive affect studies are inconsistent; this may be due to individual differences. The relationship between dopamine and performance is not linear, but instead follows an inverted “U” shape. Given this, we hypothesized that individuals with high working memory capacity, a proxy measure for dopaminergic transmission, would not benefit from positive mood induction and in fact performance in dopamine-mediated tasks would decline. In contrast, we predicted that individuals with low working memory capacities would receive the most benefit after positive mood induction. Here, we explored the effect of positive affect on two dopamine-mediated tasks, an explicit serial reaction time sequence learning task and the stop signal task, predicting that an individual’s performance is modulated not only by working memory capacity, but also on the type of mood. Improvements in explicit sequence learning from pre- to post-positive mood induction were associated with working memory capacity; performance declined in individuals with higher working memory capacities following positive mood induction, but improved in individuals with lower working memory capacities. This was not the case for negative or neutral mood induction. Moreover, there was no relationship between the change in stop signal reaction time with any of the mood inductions and individual differences in working memory capacity. These results provide partial support for the neurobiological theory of positive affect and highlight the importance of taking into account individual differences in working memory when examining the effects of positive mood induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arnsten AF, Mathew R, Ubriani R, Taylor JR, Li BM (1999) Alpha-1 noradrenergic receptor stimulation impairs prefrontal cortical cognitive function. Biol Psychiatry 45(1):26–31

    Article  CAS  PubMed  Google Scholar 

  • Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6(2):115–116

    Article  CAS  PubMed  Google Scholar 

  • Aron AR, Monsell S, Sahakian BJ, Robbins TW (2004) A componential analysis of task-switching deficits associated with lesions of left and right frontal cortex. Brain 127(Pt 7):1561–1573

    Article  PubMed  Google Scholar 

  • Aron AR, Poldrack RA (2006) Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J Neurosci 26(9): 2424–2433

  • Ashby FG, Isen AM (1999) A neuropsychological theory of positive affect and its influence on cognition. Psychological Rev 106(3):529

  • Bari A, Eagle DM, Mar AC, Robinson ES, Robbins TW (2009) Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology 205(2):273–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley MM, Lang PJ (1994) Measuring emotion—the self-assessment mannequin and the semantic differential. J Behav Ther Exp Psychiatry 25(1):49–59

    Article  CAS  PubMed  Google Scholar 

  • Bruyneel L et al (2013) Happy but still focused: Failures to find evidence for a mood-induced widening of visual attention. Psychol Res 77(3):320–332

    Article  PubMed  Google Scholar 

  • Cano-Colino M, Almeida R, Gomez-Cabrero D, Artigas F, Compte A (2014) Serotonin regulates performance nonmonotonically in a spatial working memory network. Cereb Cortex 24(9):2449–2463

    Article  PubMed  Google Scholar 

  • Chevrier A, Cheyne D, Graham S, Schachar R (2015) Dissociating two stages of preparation in the stop signal task using fMRI. PLoS ONE 10(6):e0130992

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark LA, Watson D, Leeka J (1989) Diurnal-variation in the positive affects. Motiv Emot 13(3):205–234

    Article  Google Scholar 

  • Clark L, Roiser JP, Cools R, Rubinsztein DC, Sahakian BJ, Robbins TW (2005) Stop signal response inhibition is not modulated by tryptophan depletion or the serotonin transporter polymorphism in healthy volunteers: implications for the 5-HT theory of impulsivity. Psychopharmacology 182(4):570–578

    Article  CAS  PubMed  Google Scholar 

  • Cools R (2006) Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson’s disease. Neurosci Biobehav Rev 30(1):1–23

    Article  CAS  PubMed  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex 11(12):1136–1143

    Article  CAS  PubMed  Google Scholar 

  • Cools R, Gibbs SE, Miyakawa A, Jagust W, D’Esposito M (2008) Working memory capacity predicts dopamine synthesis capacity in the human striatum. J Neurosci 28(5):1208–1212

    Article  CAS  PubMed  Google Scholar 

  • Daneman M, Carpenter PA (1980) Individual-differences in working memory and reading. J Verbal Learn Verbal Behav 19(4):450–466

    Article  Google Scholar 

  • Demanet J, Liefooghe B, Verbruggen F (2011) Valence, arousal, and cognitive control: a voluntary task-switching study. Front Psychol 2:336

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyon J, Penhune V, Ungerleider LG (2003) Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 41(3):252–262

    Article  PubMed  Google Scholar 

  • Eagle DM, Robbins TW (2003) Inhibitory control in rats performing a stop-signal reaction-time task: effects of lesions of the medial striatum and d-amphetamine. Behav Neurosci 117(6):1302–1317

    Article  CAS  PubMed  Google Scholar 

  • Eagle DM, Tufft MR, Goodchild HL, Robbins TW (2007) Differential effects of modafinil and methylphenidate on stop-signal reaction time task performance in the rat, and interactions with the dopamine receptor antagonist cis-flupenthixol. Psychopharmacology 192(2):193–206

    Article  CAS  PubMed  Google Scholar 

  • Eagle DM, Lehmann O, Theobald DE, Pena Y, Zakaria R, Ghosh R, Dalley M, Robbins TW (2009) Serotonin depletion impairs waiting but not stop-signal reaction time in rats: implications for theories of the role of 5-HT in behavioral inhibition. Neuropsychopharmacol 34(5):1311–1321. doi:10.1038/npp.2008.202

  • Eagle DM, Wong JC, Allan ME, Mar AC, Theobald DE, Robbins TW (2011) Contrasting roles for dopamine D1 and D2 receptor subtypes in the dorsomedial striatum but not the nucleus accumbens core during behavioral inhibition in the stop-signal task in rats. J Neurosci 31(20):7349–7356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer H et al (2001) Dispositional pessimism and amygdala activity: a PET study in healthy volunteers. Neuroreport 12(8):1635–1638

    Article  CAS  PubMed  Google Scholar 

  • Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cognit Neurosci 17(1):51–72

    Article  Google Scholar 

  • Frank Y, Pergolizzi RG, Perilla MJ (2004) Dopamine D4 receptor gene and attention deficit hyperactivity disorder. Pediatr Neurol 31(5):345–348

    Article  PubMed  Google Scholar 

  • Gauggel S, Rieger M, Feghoff TA (2004) Inhibition of ongoing responses in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 75(4):539–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghahremani DG, Lee B, Robertson CL, Tabibnia G, Morgan AT, De Shetler N, Brown AK, Monterosso JR, Aron AR, Mandelkern MA, Poldrack RA, London ED (2012) Striatal dopamine D(2)/D(3) receptors mediate response inhibition and related activity in frontostriatal neural circuitry in humans. J Neurosci 32(21):7316–7324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Ham BJ, Kim YH, Choi MJ, Cha JH, Choi YK, Lee MS (2004) Serotonergic genes and personality traits in the Korean population. Neurosci Lett 354(1):2–5

    Article  CAS  PubMed  Google Scholar 

  • Hamann S, Canli T (2004) Individual differences in emotion processing. Curr Opin Neurobiol 14(2):233–238

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka O, Nakamura K, Sakai K, Nakahara H (2002) Central mechanisms of motor skill learning. Curr Opin Neurobiol 12(2):217–222

    Article  CAS  PubMed  Google Scholar 

  • Jocham G, Ullsperger M (2009) Neuropharmacology of performance monitoring. Neurosci Biobehav Rev 33(1):48–60

    Article  CAS  PubMed  Google Scholar 

  • Kaiser S et al (2003) Executive control deficit in depression: event-related potentials in a Go/Nogo task. Psychiatry Res Neuroimaging 122(3):169–184

    Article  PubMed  Google Scholar 

  • Kalanthroff E, Cohen N, Henik A (2013) Stop feeling: inhibition of emotional interference following stop-signal trials. Front Hum Neurosci 7:78. doi:10.3389/fnhum.2013.00078

  • Kane MJ, Engle RW (2002) The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychon Bull Rev 9(4):637–671

    Article  PubMed  Google Scholar 

  • Kimberg DY, D’Esposito M, Farah MJ (1997) Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport 8(16):3581–3585

    Article  CAS  PubMed  Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318(14):876–880

    Article  CAS  PubMed  Google Scholar 

  • Kwak Y, Muller ML, Bohnen NI, Dayalu P, Seidler RD (2010) Effect of dopaminergic medications on the time course of explicit motor sequence learning in Parkinson’s disease. J Neurophysiol 103(2):942–949

    Article  CAS  PubMed  Google Scholar 

  • Larsen JT, Norris CJ, Cacioppo JT (2003) Effects of positive and negative affect on electromyographic activity over zygomaticus major and corrugator supercilii. Psychophysiology 40(5):776–785

    Article  PubMed  Google Scholar 

  • Larson MJ, Perlstein WM, Stigge-Kaufman D, Kelly KG, Dotson VM (2006) Affective context-induced modulation of the error-related negativity. Neuroreport 17(3):329–333

  • Leech R, Kamourieh S, Beckmann CF, Sharp DJ (2011) Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J Neurosci 31(9):3217–3224

    Article  CAS  PubMed  Google Scholar 

  • Logan GD, Cowan WB (1984) On the ability to inhibit thought and action—a theory of an act of control. Psychol Rev 91(3):295–327

    Article  Google Scholar 

  • Luciana M, Burgund ED, Berma M, Hanson KL (2001) Effects of tryptophan loading on verbal, spatial and affective working memory functions in healthy adults. J Psychopharmacol 15(4):219–230

  • Luciana M, Collins PF, Depue RA (1998) Opposing roles for dopamine and serotonin in the modulation of human spatial working memory functions. Cereb Cortex 8(3):218–226

  • Miller AE, Watson JM, Strayer DL (2012) Individual differences in working memory capacity predict action monitoring and the error-related negativity. J Exp Psychol Learn Mem Cognit 38(3):757

    Article  Google Scholar 

  • Neumeister A (2002) Tryptophan depletion, serotonin, and depression: where do we stand? Psychopharmacol Bull 37(4):99–115

    Google Scholar 

  • Quarta D, Naylor CG, Glennon JC, Stolerman IP (2012) Serotonin antagonists in the five-choice serial reaction time task and their interactions with nicotine. Behav Pharmacol 23(2):143–152

    Article  CAS  PubMed  Google Scholar 

  • Rakshi JS, Uema T, Ito K, Bailey DL, Morrish PK, Ashburner J, Dagher A, Jenkins IH, Friston KJ, Brooks DJ (1999) Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson’s disease A 3D [(18)F]dopa-PET study. Brain 122(Pt 9):1637–1650

    Article  PubMed  Google Scholar 

  • Richeson JA, Baird AA, Gordon HL, Heatherton TF, Wyland CL, Trawalter S, Shelton JN (2003) An fMRI investigation of the impact of interracial contact on executive function. Nat Neurosci 6(12):1323–1328

  • Robertson CL, Ishibashi K, Mandelkern MA, Brown AK, Ghahremani DG, Sabb F, Bilder R, Cannon T, Borg J, London ED (2015) Striatal D1- and D2-type dopamine receptors are linked to motor response inhibition in human subjects. J Neurosci 35(15):5990–5997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe G, Hirsh JB, Anderson AK (2007) Positive affect increases the breadth of attentional selection. Proc Natl Acad Sci 104(1):383–388

    Article  CAS  PubMed  Google Scholar 

  • Russell JA, Weiss A, Mendelsohn GA (1989) Affect grid—a single-item scale of pleasure and arousal. J Pers Soc Psychol 57(3):493–502

    Article  Google Scholar 

  • Sasaki-Adams DM, Kelley AE (2001) Serotonin-dopamine interactions in the control of conditioned reinforcement and motor behavior. Neuropsychopharmacology 25(3):440–452

    Article  CAS  PubMed  Google Scholar 

  • Schuck NW, Frensch PA, Schjeide BM, Schroder J, Bertram L, Li SC (2013) Effects of aging and dopamine genotypes on the emergence of explicit memory during sequence learning. Neuropsychologia 51(13):2757–2769

    Article  PubMed  Google Scholar 

  • van den Wildenberg WP, van Boxtel GJ, van der Molen MW, Bosch DA, Speelman JD, Brunia CH (2006a) Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson’s disease. J Cognit Neurosci 18(4):626–636

    Article  Google Scholar 

  • Van der Stigchel S, Imants P, Ridderinkhof KR (2011) Positive affect increases cognitive control in the antisaccade task. Brain Cognit 75(2):177–181

    Article  Google Scholar 

  • van Wouwe NC, Band GP, Ridderinkhof KR (2011) Positive affect modulates flexibility and evaluative control. J Cogn Neurosci 23(3):524–539

    Article  PubMed  Google Scholar 

  • Volkow ND et al (2009) Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications. JAMA 301(11):1148–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson D, Clark LA (1991) Self-ratings versus peer-ratings of specific emotional traits—evidence of convergent and discriminant validity. J Pers Soc Psychol 60(6):927–940

    Article  Google Scholar 

  • Wiswede D, Munte TF, Kramer UM, Russeler J (2009a) Embodied emotion modulates neural signature of performance monitoring. PLoS ONE 4(6):e5754

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiswede D et al (2009b) Modulation of the error-related negativity by induction of short-term negative affect. Neuropsychologia 47(1):83–90

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Greeley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greeley, B., Seidler, R.D. Mood induction effects on motor sequence learning and stop signal reaction time. Exp Brain Res 235, 41–56 (2017). https://doi.org/10.1007/s00221-016-4764-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4764-8

Keywords

Navigation