Skip to main content
Log in

The COGs (context, object, and goals) in multisensory processing

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Our understanding of how perception operates in real-world environments has been substantially advanced by studying both multisensory processes and “top-down” control processes influencing sensory processing via activity from higher-order brain areas, such as attention, memory, and expectations. As the two topics have been traditionally studied separately, the mechanisms orchestrating real-world multisensory processing remain unclear. Past work has revealed that the observer’s goals gate the influence of many multisensory processes on brain and behavioural responses, whereas some other multisensory processes might occur independently of these goals. Consequently, other forms of top-down control beyond goal dependence are necessary to explain the full range of multisensory effects currently reported at the brain and the cognitive level. These forms of control include sensitivity to stimulus context as well as the detection of matches (or lack thereof) between a multisensory stimulus and categorical attributes of naturalistic objects (e.g. tools, animals). In this review we discuss and integrate the existing findings that demonstrate the importance of such goal-, object- and context-based top-down control over multisensory processing. We then put forward a few principles emerging from this literature review with respect to the mechanisms underlying multisensory processing and discuss their possible broader implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aller M, Giani A, Conrad V, Watanabe M, Noppeney U (2015) A spatially collocated sound thrusts a flash into awareness. Front Integr Neurosci 9:16. doi:10.3389/fnint.2015.00016

    Article  PubMed  PubMed Central  Google Scholar 

  • Alsius A, Munhall KG (2013) Detection of audiovisual speech correspondences without visual awareness. Psychol Sci 24:423–431

    Article  PubMed  Google Scholar 

  • Alsius A, Soto-Faraco S (2011) Searching for audiovisual correspondence in multiple speaker scenarios. Exp Brain Res 213:175–183

    Article  PubMed  Google Scholar 

  • Alsius A, Navarra J, Campbell R, Soto-Faraco S (2005) Audiovisual integration of speech falters under high attention demands. Curr Biol 15:839–843

    Article  CAS  PubMed  Google Scholar 

  • Alsius A, Navarra J, Soto-Faraco S (2007) Attention to touch weakens audiovisual speech integration. Exp Brain Res 183:399–404

    Article  PubMed  Google Scholar 

  • Alsius A, Möttönen R, Sams ME, Soto-Faraco S, Tippana K (2014) Effect of attentional load on audiovisual speech perception: evidence from ERPs. Front Psychol 5:727. doi:10.3389/fpsyg.2014.00727

    Article  PubMed  PubMed Central  Google Scholar 

  • Altieri N, Stevenson RA, Wallace MT, Wenger MJ (2015) Learning to associate auditory and visual stimuli: behavioral and neural mechanisms. Brain Topogr 28(3):479–493

    Article  PubMed  Google Scholar 

  • Amedi A, von Kriegstein K, van Atteveldt NM, Beauchamp MS, Naumer MJ (2005) Functional imaging of human crossmodal identification and object recognition. Exp Brain Res 166:559–571

    Article  CAS  PubMed  Google Scholar 

  • Amso D, Scerif G (2015) The attentive brain: insights from developmental cognitive neuroscience. Nat Rev Neurosci 16:606–619

    Article  CAS  PubMed  Google Scholar 

  • Arnal LH, Giraud AL (2012) Cortical oscillations and sensory predictions. Trends Cogn Sci 16:390–398

    Article  PubMed  Google Scholar 

  • Astle DE, Scerif G (2011) Interactions between attention and visual short-term memory (VSTM): what can be learnt from individual and developmental differences? Neuropsychologia 49(6):1435–1445

    Article  PubMed  Google Scholar 

  • Baart M, Stekelenburg JJ, Vroomen J (2014) Electrophysiological evidence for speech-specific audiovisual integration. Neuropsychologia 53:115–121

    Article  PubMed  Google Scholar 

  • Bach DR, Neuhoff JG, Perrig W, Seirfritz E (2009) Looming sounds as warning signals: the function of motion cues. Int J Psychophysiol 74:28–33

    Article  PubMed  Google Scholar 

  • Baddeley A, Eysensck AW, Anderson MC (2009) Memory: motivated forgetting. Psychology press, New York

    Google Scholar 

  • Baier B, Kleinschmidt A, Müller NG (2006) Cross-modal processing in early visual and auditory cortices depends on expected statistical relationship of multisensory information. J Neurosci 26:12260–12265

    Article  CAS  PubMed  Google Scholar 

  • Baker CI, Olson CR, Behrmann M (2004) Role of attention and perceptual grouping in visual statistical learning. Psychol Sci 15(7):460–466

    Article  PubMed  Google Scholar 

  • Bar M (2004) Visual objects in context. Nat Rev Neurosci 5:617–629

    Article  CAS  PubMed  Google Scholar 

  • Barakat BK, Seitz AR, Shams L (2013) The effect of statistical learning on internal stimulus representations: predictable items are enhanced even when not predicted. Cognition 129:205–211

    Article  PubMed  Google Scholar 

  • Barenholtz E, Lewkowicz DJ, Davidson M, Mavica L (2014) Categorical congruence facilitates multisensory associative learning. Psychon Bull Rev 21(5):1346–1352

    Article  PubMed  Google Scholar 

  • Barth DS, Goldberg N, Brett B, Di S (1995) The spatiotemporal organization of auditory, visual, and auditory-visual evoked potentials in rat cortex. Brain Res 678:177–190

    Article  PubMed  Google Scholar 

  • Beauchamp MS, Argall BD, Bodurka J, Duyn JH, Martin A (2004) Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nat Neurosci 7:1190–1192

    Article  CAS  PubMed  Google Scholar 

  • Beierholm UR, Quartz SR, Shams L (2009) Bayesian priors are encoded independently from likelihoods in human multisensory perception. J Vis 9:23

    Article  PubMed  Google Scholar 

  • Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312

    Article  CAS  PubMed  Google Scholar 

  • Besle J et al (2011) Tuning of the human neocortex to the temporal dynamics of attended events. J Neurosci 31:3176–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bien N, ten Oever S, Goebel R, Sack AT (2012) The sound of size: crossmodal binding in pitch-size synesthesia: a combined TMS, EEG and psychophysics study. NeuroImage 59:663–672

    Article  PubMed  Google Scholar 

  • Brang D, Towle VL, Suzuki S, Hillyard SA, Di Tusa S, Dai Z, Grabowecky M (2015) Peripheral sounds rapidly activate visual cortex: evidence from electrocorticography. J Neurophys. doi:10.1152/jn.00728.2015

    Google Scholar 

  • Braver TS (2012) The variable nature of cognitive control: a dual-mechanism framework. Trends Cogn Sci 16:106–113

    Article  PubMed  PubMed Central  Google Scholar 

  • Cappe C, Thut G, Romei V, Murray MM (2009) Selective integration of auditory-visual looming cues by humans. Neuropsychologia 47:1045–1052

    Article  PubMed  Google Scholar 

  • Cappe C, Thut G, Romei V, Murray MM (2010) Auditory–visual multisensory interactions in humans: timing, topography, directionality, and sources. J Neurosci 30:12572–12580

    Article  CAS  PubMed  Google Scholar 

  • Cappe C, Thelen A, Romei V, Thut G, Murray MM (2012) Looming signals reveal synergistic principles of multisensory integration. J Neurosci 32:1171–1182

    Article  CAS  PubMed  Google Scholar 

  • Cecere R, Romei V, Bertini C, Làdavas E (2014) Crossmodal enhancement of visual orientation discrimination by looming sounds requires functional activation of primary visual areas: a case study. Neuropsychologia 56:350–358

    Article  PubMed  Google Scholar 

  • Cecere R, Rees G, Romei V (2015) Individual differences in alpha frequency drive crossmodal illusory perception. Curr Biol 25(2):231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran C, Trubanova A, Stillittano S, Caplier A, Ghazanfar AA (2009) The natural statistics of audiovisual speech. PLoS Comp Biol 5:e1000436

    Article  CAS  Google Scholar 

  • Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18:7426–7435

    CAS  PubMed  Google Scholar 

  • Cravo AM, Rohenkohl G, Wyart V, Nobre AC (2011) Endogenous modulation of low frequency oscillations by temporal expectations. J Neurophysiol 106:2964–2972

    Article  PubMed  PubMed Central  Google Scholar 

  • De Meo R, Murray MM, Clarke S, Matusz PJ (2015) Top-down control and early multisensory processes: chicken vs. egg. Front Integr Neurosci 9:17. doi:10.3389/fnint.2015.00017

    Article  PubMed  PubMed Central  Google Scholar 

  • Dehaene S, Cohen L (2007) Cultural recycling of cortical maps. Neuron 56:384–398

    Article  CAS  PubMed  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annual Rev Neurosci 18:193–222

    Article  CAS  Google Scholar 

  • Diaconescu AO, Alain C, McIntosh AR (2011) The co-occurrence of multisensory facilitation and cross-modal conflict in the human brain. J Neurophysiol 106(6):2896–2909

    Article  PubMed  Google Scholar 

  • Ding Y, Martinez A, Qu Z, Hillyard SA (2014) Earliest stages of visual cortical processing are not modified by attentional load. Hum Brain Map 35:3008–3024

    Article  Google Scholar 

  • Doehrmann O, Naumer MJ (2008) Semantics and the multisensory brain: how meaning modulates processes of audio-visual integration. Brain Res 1242:136–150

    Article  CAS  PubMed  Google Scholar 

  • Duncan J, Humphreys GW (1989) Visual search and stimulus similarity. Psychol Rev 96(3):433–458

    Article  CAS  PubMed  Google Scholar 

  • Fairhall SL, Macaluso E (2009) Spatial attention can modulate audiovisual integration at multiple cortical and subcortical sites. Eur J Neurosci 29:1247–1257

    Article  CAS  PubMed  Google Scholar 

  • Fernández LM, Visser M, Campos NV, Rivera CÁ, Soto-Faraco S (2015) Top-down attention regulates the neural expression of audiovisual integration. NeuroImage. 119:272–285

    Article  Google Scholar 

  • Fetsch CR, DeAngelis GC, Angelaki DE (2013) Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nat Rev Neurosci 14:429–442

    Article  CAS  PubMed  Google Scholar 

  • Fiebelkorn IC, Foxe JJ, Butler JS, Mercier MR, Snyder AC, Molholm S (2011) Ready, set, reset: stimulus-locked periodicity in behavioral performance demonstrates the consequences of cross-sensory phase reset. J Neurosci 31(27):9971–9981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiebelkorn IC, Snyder AC, Mercier MR, Butler JS, Molhom S, Foxe JJ (2013) cortical cross-frequency coupling predicts perceptual outcomes. Neuroimage 69:126–137

    Article  CAS  PubMed  Google Scholar 

  • Finisguerra A, Canzoneri E, Serino A, Pozzo T, Bassolino M (2015) Moving sounds within the peripersonal space modulate the motor system. Neuropsychologia 70:421–428

    Article  PubMed  Google Scholar 

  • Folk CL, Remington RW, Johnston JC (1992) Involuntary covert orienting is contingent on attentional control settings. J Exp Psychol Hum Percept Perform 18:1030–1044

    Article  CAS  PubMed  Google Scholar 

  • Fort A, Delpuech C, Pernier J, Giard MH (2002) Dynamics of cortico-subcortical crossmodal operations involved in audio-visual object detection in humans. Cereb Cortex 12:1031–1039

    Article  PubMed  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480

    Article  PubMed  Google Scholar 

  • Frost R, Armstrong BC, Siegelman N, Christiansen MH (2015) Domain generality versus modality specificity: the paradox of statistical learning. Trends Cogn Sci 19(3):117–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Froyen DJ, Bonte ML, van Atteveldt N, Blomert L (2009) The long road to automation: neurocognitive development of letter–speech sound processing. J Cogn Neurosci 21:567–580

    Article  PubMed  Google Scholar 

  • Fujisaki W, Shimojo S, Kashino M, Nishida SY (2004) Recalibration of audiovisual simultaneity. Nat Neurosci 7(7):773–778

    Article  CAS  PubMed  Google Scholar 

  • Ghazanfar AA, Maier JX, Hoffman KL, Logothetis NK (2005) Multisensory integration of dynamic faces and voices in rhesus monkey auditory cortex. J Neurosci 25(20):5004–5012

    Article  CAS  PubMed  Google Scholar 

  • Giard MH, Peronnet F (1999) Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J Cogn Neurosci 11:473–490

    Article  CAS  PubMed  Google Scholar 

  • Gori M, Sandini G, Burr D (2008) Young children do not integrate visual and haptic form information. Curr Biol 18:694–698

    Article  CAS  PubMed  Google Scholar 

  • Heron J, Roach NW, Hanson JV, McGraw PV, Whitaker D (2012) Audiovisual time perception is spatially specific. Exp Brain Res 218(3):477–485

    Article  PubMed  PubMed Central  Google Scholar 

  • Holloway I, van Atteveldt N, Blomert L, Ansari D (2015) Orthographic dependency in the neural correlates of reading: evidence from audiovisual integration in English readers. Cereb Cortex 25(6):1544–1553

    Article  PubMed  Google Scholar 

  • Ikumi N, Soto-Faraco S (2014) Selective attention modulates the direction of audio-visual temporal recalibration. PloS One 9:e99311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iordanescu L, Grabowecky M, Suzuki S (2009) Demand-based dynamic distribution of attention and monitoring of velocities during multiple-object tracking. J Vis 9:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones A (2015) Independent effects of bottom-up temporal expectancy and top-down spatial attention. An audiovisual study using rhythmic cueing. Front Integr Neurosci 8:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Kayser C, Petkov CI, Logothetis NK (2008) Visual modulation of neurons in auditory cortex. Cereb Cortex 18(7):1560–1574

    Article  PubMed  Google Scholar 

  • Klapetek A, Ngo MK, Spence C (2012) Does crossmodal correspondence modulate the facilitatory effect of auditory cues on visual search? Atten Percept Psychophys 74:1154–1167

    Article  PubMed  Google Scholar 

  • Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320:110–113

    Article  CAS  PubMed  Google Scholar 

  • Lamme VA, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571–579

    Article  CAS  PubMed  Google Scholar 

  • Laurienti PJ, Kraft RA, Maldjian JA, Burdette JH, Wallace MT (2004) Semantic congruence is a critical factor in multisensory behavioral performance. Exp Brain Res 158:405–414

    Article  PubMed  Google Scholar 

  • Lavie N (2010) Attention, distraction, and cognitive control under load. Cur Dir Psyc Sci 19:143–148

    Article  Google Scholar 

  • Lewkowicz DJ (2014) Early experience and multisensory perceptual narrowing. Dev Psychobiol 56:292–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Los SA, Van der Burg E (2013) Sound speeds vision through preparation, not integration. J Exp Psychol Hum Percept Perform 39:1612

    Article  PubMed  Google Scholar 

  • Luck SJ, Hillyard SA (1994) Spatial filtering during visual search: evidence from human electrophysiology. J Exp Psychol Hum Percept Perform 20:1000–1014

    Article  CAS  PubMed  Google Scholar 

  • Lunghi C, Morrone MC, Alais D (2014) Auditory and tactile signals combine to influence vision during binocular rivalry. J Neurosci 34:784–792

    Article  CAS  PubMed  Google Scholar 

  • Maier JX, Nuehoff JG, Logothetis NK, Ghazanfar AA (2004) Multisensory integration of looming signals by rhesus monkeys. Neuron 43:177–181

    Article  CAS  PubMed  Google Scholar 

  • Martuzzi R et al (2007) Multisensory interactions within human primary cortices revealed by BOLD dynamics. Cereb Cortex 17:1672–1679

    Article  PubMed  Google Scholar 

  • Masterberdino S, Santangelo V, Macaluso E (2015) Crossmodal semantic congruence can affect visuo-spatial processing and activity of the fronto-parietal attention networks. Front Integr Neurosci 9:45

    Google Scholar 

  • Matusz PJ, Eimer M (2011) Multisensory enhancement of attentional capture in visual search. Psychon B Rev 18:904–909

    Article  Google Scholar 

  • Matusz PJ, Eimer M (2013) Top-down control of audiovisual search by bimodal search templates. Psychophysiology 50:996–1009

    PubMed  Google Scholar 

  • Matusz PJ, Traczyk J, Sobkow A, Strelau J (2015a) Individual differences in emotional reactivity moderate the strength of the relationship between attentional and implicit-memory biases towards threat-related stimuli. J Cogn Psyc 27:715–724

    Article  Google Scholar 

  • Matusz PJ et al (2015b) The role of auditory cortices in the retrieval of single-trial auditory–visual object memories. Eur J Neurosci 41:699–708

    Article  PubMed  Google Scholar 

  • Matusz PJ et al (2015c) Multi-modal distraction: insights from children’s limited attention. Cognition 136:156–165

    Article  PubMed  Google Scholar 

  • Matusz PJ, Retsa C, Murray MM (2016) The context-contingent nature of cross-modal activations of the visual cortex. Neuroimage 125:996–1004

    Article  PubMed  Google Scholar 

  • McGurk H, MacDonald J (1976) Hearing lips and seeing voices. Nature 264:746–748

    Article  CAS  PubMed  Google Scholar 

  • Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci 7:3215–3229

    CAS  PubMed  Google Scholar 

  • Meredith MA, Allman BL, Keniston LP, Clemo HR (2012) Are bimodal neurons the same throughout the brain? In: Murray MM, Wallace MT (eds) The neural bases of multisensory processes, chapter 4. CRC Press, Boca Raton (FL)

    Google Scholar 

  • Molholm S, Ritter W, Murray MM, Javitt DC, Schroeder CE, Foxe JJ (2002) Multisensory auditory–visual interactions during early sensory processing in humans: a high-density electrical mapping study. Cogn Brain Res 14:115–128

    Article  Google Scholar 

  • Molholm S, Ritter W, Javitt DC, Foxe JJ (2004) Multisensory visual–auditory object recognition in humans: a high-density electrical mapping study. Cereb Cortex 14:452–465

    Article  PubMed  Google Scholar 

  • Mondloch CJ, Maurer D (2004) Do small white balls squeak? Pitch-object correspondences in young children. Cogn Affect Behav Neurosci 4:133–136

    Article  PubMed  Google Scholar 

  • Murray MM et al (2004) Rapid discrimination of visual and multisensory memories revealed by electrical neuroimaging. Neuroimage 21:125–135

    Article  PubMed  Google Scholar 

  • Murray MM, Foxe JJ, Wylie GR (2005) The brain uses single-trial multisensory memories to discriminate without awareness. Neuroimage 27:473–478

    Article  PubMed  Google Scholar 

  • Murray MM, Wallace MT (eds) (2012) The neural bases of multisensory processes. CRC Press, Boca Raton (FL)

  • Murray MM, Thelen A, Thut G, Romei V, Martuzzi R, Matusz PJ (2016) The multisensory function of the human primary visual cortex. Neurpsychologia 83C:161–169

    Article  Google Scholar 

  • Musacchia G, Schroeder CE (2009) Neuronal mechanisms, response dynamics and perceptual functions of multisensory interactions in auditory cortex. Hear Res 258:72–79

    Article  PubMed  Google Scholar 

  • Naci L, Taylor KI, Cusack R, Tyler LK (2012) Are the senses enough for sense? Early high-level feedback shapes our comprehension of multisensory objects. Front Integr Neurosci 6:82. doi:10.3389/fnint.2012.00082

    Article  PubMed  PubMed Central  Google Scholar 

  • Nahorna O, Berthommier F, Schwartz JL (2012) Binding and unbinding the auditory and visual streams in the McGurk effect. J Acoust Soc Am 132:1061–1077

    Article  PubMed  Google Scholar 

  • Nardini M, Jones P, Bedford R, Braddick O (2008) Development of cue integration in human navigation. Curr Biol 18:689–693

    Article  CAS  PubMed  Google Scholar 

  • Nardini M, Bales J, Mareschal D (2015) Integration of audio-visual information for spatial decisions in children and adults. Dev Sci. doi:10.1111/desc.12327

    Google Scholar 

  • Nardo D, Santangelo V, Macaluso E (2014) Spatial orienting in complex audiovisual environments. Hum Brain Map 35:1597–1614

    Article  Google Scholar 

  • Neil PA, Chee-Ruiter C, Scheier C, Lewkowicz DJ, Shimojo S (2006) Development of multisensory spatial integration and perception in humans. Dev Sci 9(5):454–464

    Article  PubMed  Google Scholar 

  • Niemi P, Näätänen R (1981) Foreperiod and simple reaction time. Psychol Bull 89(1):133–162

    Article  Google Scholar 

  • Nobre K, Kastner S (eds) (2014) The Oxford handbook of attention. Oxford University Press, Oxford

    Google Scholar 

  • Orchard-Mills E, Alais D, Van der Burg E (2013a) Crossmodal associations between vision, touch, and audition influence visual search through top-down attention, not bottom-up capture. Atten Percept Psychophys 75:1892–1905

    Article  PubMed  Google Scholar 

  • Orchard-Mills E, Van der Burg E, Alais D (2013b) Amplitude-modulated auditory stimuli influence selection of visual spatial frequencies. J Vis 13:6

    Article  PubMed  Google Scholar 

  • Palmer TD, Ramsey AK (2012) The function of consciousness in multisensory integration. Cognition 125:353–364

    Article  PubMed  Google Scholar 

  • Parise CV, Ernst M (2015) Correlation detection as a general mechanism for multisensory integration. J Vis 15:364

    Article  PubMed  Google Scholar 

  • Parise CV, Spence C (2009) ‘When birds of a feather flock together’: synesthetic correspondences modulate audiovisual integration in non-synesthetes. PLoS One 4:e5664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perrodin C, Kayser C, Abel TJ, Logothetis NK, Petkov CI (2015) Who is that? Brain networks and mechanisms for indentifying individuals. doi:10.1016/j.tics.2015.09.002

  • Powers AR, Hevey MA, Wallace MT (2012) Neural correlates of multisensory perceptual learning. J Neurosci 32:6263–6274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raij T, Uutela K, Hari R (2000) Audiovisual integration of letters in the human brain. Neuron 28:617–625

    Article  CAS  PubMed  Google Scholar 

  • Raij T, Ahveninen J et al (2010) Onset timing of cross-sensory activations and multisensory interactions in auditory and visual sensory cortices. Eur J Neurosci 31:1772–1782

    Article  PubMed  PubMed Central  Google Scholar 

  • Rind FC, Simmons PJ (1999) Seeing what is coming: building collision-sensitive neurons 22(5):215–220

    CAS  Google Scholar 

  • Rohe T, Noppeney U (2015) Cortical hierarchies perform Bayesian causal inference in multisensory perception. PLoS Biol 13(2):e1002073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romei V, Murray MM, Merabet LB, Thut G (2007) Occipital transcranial magnetic stimulation has opposing effects on visual and auditory stimulus detection: implications for multisensory interactions. J Neurosci 27:11465–11472

    Article  CAS  PubMed  Google Scholar 

  • Romei V, Murray MM, Cappe C, Thut G (2009) Preperceptual and stimulus-selective enhancement of low-level human visual cortex excitability by sounds. Curr Biol 19:1799–1805

    Article  CAS  PubMed  Google Scholar 

  • Romei V, Gross J, Thut G (2012) Sounds reset rhythms of visual cortex and corresponding human visual perception. Curr Biol 22(9):807–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romei V, Murray MM, Cappe C, Thut G (2013) The contributions of sensory dominance and attentional bias to crossmodal enhancement of visual cortex excitability. J Cogn Neurosci 25:1122–1135

    Article  PubMed  Google Scholar 

  • Rowland BA, Stein BE (2007) Multisensory integration produces an initial response enhancement. Front Integr Neurosci 1:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanabria D, Soto-Faraco S, Spence C (2005) Assessing the effect of visual and tactile distractors on the perception of auditory apparent motion. Exp Brain Res 166(3–4):548–558

    Article  PubMed  Google Scholar 

  • Santangelo V, Spence C (2007) Multisensory cues capture spatial attention regardless of perceptual load. J Exp Psychol Hum Percept Perform 33(6):1311–1321

    Article  PubMed  Google Scholar 

  • Santangelo V, Di Francesco SA, Mastroberardino S, Macaluso E (2015) Parietal cortex integrates contextual and saliency signals during the encoding of natural scenes in working memory. Hum Brain Mapp 36:5003–5017

    Article  PubMed  Google Scholar 

  • Sarmiento BR, Shore DI, Milliken B, Sanabria D (2012) Audiovisual interactions depend on context of congruency. Atten Percept Psychophys 74:563–574

    Article  PubMed  Google Scholar 

  • Sarmiento B, Matusz PJ, Sanabria D, Murray MM (2016) Contextual factors multiplex to control multisensory processes. Hum Brain Mapp. doi: 10.1002/hbm.23030

  • Scerif G (2010) Attention trajectories, mechanisms and outcomes: at the interface between developing cognition and environment. Dev Sci 13:805–812

    Article  PubMed  Google Scholar 

  • Schiff W, Caviness JA, Gibson JJ (1962) Persistent fear responses in rhesus monkeys to the optical stimulus of “looming”. Science 136:982–983

    Article  CAS  PubMed  Google Scholar 

  • Schroeder CE, Molhom S, Lakatos P, Ritter W, Foxe JJ (2004) Human–simian correspondence in the early cortical processing of multisensory cues. Cogn Proc 5:140–151

    Article  Google Scholar 

  • Schroeder CE, Wilson DA, Radman T, Scharfman H, Lakatos P (2010) Dynamics of active sensing and perceptual selection. Curr Opin Neurobiol 20:172–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senkowski D, Saint-Amour D, Kelly SP, Foxe JJ (2007) Multisensory processing of naturalistic objects in motion: a high-density electrical mapping and source estimation study. Neuroimage 36(3):877–888

    Article  PubMed  Google Scholar 

  • Soto-Faraco S, Calabresi M, Navarra J, Werker J, Lewkowicz DJ (2012) The development of audiovisual speech perception. Multisensory development. Oxford University Press, Oxford, pp 207–228

    Chapter  Google Scholar 

  • Spence C, Deroy O (2013) How automatic are crossmodal correspondences? Conscious Cogn 22:245–260

    Article  PubMed  Google Scholar 

  • Spierer L, Manuel AL, Bueti D, Murray MM (2013) Contributions of pitch and bandwidth to sound-induced enhancement of visual cortex excitability in humans. Cortex 49:2728–2734

    Article  PubMed  Google Scholar 

  • Stein BE (2012) The new handbook of multisensory processing. MIT Press, Cambridge

    Google Scholar 

  • Stekelenburg JJ, Vroomen J (2007) Neural correlates of multisensory integration of ecologically valid audiovisual events. J Cogn Neurosci 19:1964–1973

    Article  PubMed  Google Scholar 

  • Stevenson RA, Wallace MT (2013) Multisensory temporal integration: task and stimulus dependencies. Exp Brain Res 277(2):249–261

    Article  Google Scholar 

  • Stevenson RA, Altieri NA, Kim S, Pisoni DB, James TW (2010) Neural processing of asynchronous audiovisual speech perception. Neuroimage 49(4):3308

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevenson RA et al (2014) Identifying and quantifying multisensory integration: a tutorial review. Brain Topogr 27:707–730

    Article  PubMed  Google Scholar 

  • Summerfield C, de Lange FP (2014) Expectation in perceptual decision making: neural and computational mechanisms. Nat Rev Neurosci 15:745–756

    Article  CAS  PubMed  Google Scholar 

  • Summerfield C, Egner T (2009) Expectation (and attention) in visual cognition. Trends Cogn Sci 13:403–409

    Article  PubMed  Google Scholar 

  • Sutherland CA, Thut G, Romei V (2014) Hearing brighter: changing in-depth visual perception through looming sounds. Cognition 132:312–323

    Article  PubMed  Google Scholar 

  • Talsma D (2015) Predictive coding and multisensory integration: an attentional account of the multisensory mind. Front Integr Neurosci 9:19. doi:10.3389/fnint.2015.00019

    Article  PubMed  PubMed Central  Google Scholar 

  • Talsma D, Woldorff MG (2005) Selective attention and multisensory integration: multiple phases of effects on the evoked brain activity. J Cogn Neurosci 17:1098–1114

    Article  PubMed  Google Scholar 

  • Talsma D, Doty TJ, Woldorff MG (2007) Selective attention and audiovisual integration: is attending to both modalities a prerequisite for early integration? Cereb Cortex 17:679–690

    Article  PubMed  Google Scholar 

  • Talsma D, Senkowski D, Soto-Faraco S, Woldorff MG (2010) The multifaceted interplay between attention and multisensory integration. Trends Cogn Sci 14:400–410

    Article  PubMed  PubMed Central  Google Scholar 

  • Teder-Sälejärvi WA, McDonald JJ, Di Russo F, Hillyard SA (2002) An analysis of audio-visual crossmodal integration by means of event-related potential (ERP) recordings. Cogn Brain Res 14:106–114

    Article  Google Scholar 

  • ten Oever S, Sack AT, Wheat KL, Bien N, Van Atteveldt N (2013) Audio-visual onset differences are used to determine syllable identity for ambiguous audio-visual stimulus pairs. Front Psychol 4:331. doi:10.3389/fpsyg.2013.00331

    Article  PubMed  PubMed Central  Google Scholar 

  • ten Oever S, Schroeder CE, Poeppel D, Van Atteveldt N, Zion Golumbic EM (2014) The influence of temporal regularities and crossmodal temporal cues on auditory detection. Neuropsychologia 63:43–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Thelen A, Matusz PJ, Murray MM (2014) Multisensory context portends object memory. Curr Biol 24:R734–R735

    Article  CAS  PubMed  Google Scholar 

  • Thelen A, Talsma D, Murray MM (2015) Single-trial multisensory memories affect later auditory and visual object discrimination. Cognition 138:148–160

    Article  PubMed  Google Scholar 

  • Thillay A, Roux S, Gissot V, Carteau-Martin I, Knight RT, Bonnet-Brilhault F, Bidet-Caulet A (2015) Sustained attention and prediction: distinct brain maturation trajectories during adolescence. Front Hum Neurosci 9:519

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuomainen J, Andersen TS, Tiippana K, Sams M (2005) Audio–visual speech perception is special. Cognition 96:B13–B22

    Article  PubMed  Google Scholar 

  • Tyll S, Bonath B, Schoenfeld MA, Heinze HJ, Ohl FW, Noesselt T (2013) Neural basis of multisensory looming signals. NeuroImage 65:13–22

    Article  PubMed  Google Scholar 

  • van Atteveldt N, Ansari D (2014) How symbols transform brain function: a review in memory of Leo Blomert. Trends Neurosci Educ 3:44–49

    Article  Google Scholar 

  • van Atteveldt N, Formisano E, Goebel R, Blomert L (2004) Integration of letters and speech sounds in the human brain. Neuron 43:271–282

    Article  PubMed  Google Scholar 

  • van Atteveldt NM, Formisano E, Goebel R, Blomert L (2007) Top-down task effects overrule automatic multisensory responses to letter-sound pairs in auditory association cortex. NeuroImage 36:1345–1360

    Article  PubMed  Google Scholar 

  • van Atteveldt N, Murray MM, Thut G, Schroeder CE (2014a) Multisensory integration: flexible use of general operations. Neuron 81:1240–1253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Atteveldt NM, Peterson BS, Schroeder CE (2014b) Contextual control of audiovisual integration in low-level sensory cortices. Human Brain Mapp 35:2394–2411

    Article  Google Scholar 

  • van der Burg E, Olivers CNL, Bronkhorst A, Theeuwes J (2008) Pip-and-pop: nonspatial auditory signals improve spatial visual search. J Exp Psychol Hum Percept Perform 34:1053–1065

    Article  PubMed  Google Scholar 

  • van der Burg E, Talsma D, Olivers CN, Hickey C, Theeuwes J (2011) Early multisensory interactions affect the competition among multiple visual objects. Neuroimage 55:1208–1218

    Article  PubMed  Google Scholar 

  • van Ee R, van Boxtel JJ, Parker AL, Alais D (2009) Multisensory congruency as a mechanism for attentional control over perceptual selection. J Neurosci 29:11641–11649

    Article  PubMed  CAS  Google Scholar 

  • Van Wassenhove V, Grant KW, Poeppel D (2005) Visual speech speeds up the neural processing of auditory speech. Proc Natl Acad Sci USA 102:1181–1186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vatakis A, Spence C (2007) Crossmodal binding: evaluating the “unity assumption” using audiovisual speech stimuli. Percept Psychophys 69:744–756

    Article  PubMed  Google Scholar 

  • Vroomen J, Keetels M, de Gelder B, Bertelson P (2004) Recalibration of temporal order perception by exposure to audio-visual asynchrony. Brain Res Cogn Brain Res 22(1):32–35

    Article  PubMed  Google Scholar 

  • Walker-Andrews A, Lennon EM (1985) Auditory–visual perception of changing distance by human infants. Child Dev 56:544–548

    Article  CAS  PubMed  Google Scholar 

  • Welch RB, Warren DH (1980) Immediate perceptual response to intersensory discrepancy. Psychchol Bull 88:638–667

    Article  CAS  Google Scholar 

  • Werner S, Noppeney U (2010a) Distinct functional contributions of primary sensory and association areas to audiovisual integration in object categorization. J Neurosci 30:2662–2675

    Article  CAS  PubMed  Google Scholar 

  • Werner S, Noppeney U (2010b) Superadditive responses in superior temporal sulcus predict audiovisual benefits in object categorization. Cereb Cortex 20(8):1829–1842

    Article  PubMed  Google Scholar 

  • Yuval-Greenberg S, Deouell LY (2007) What you see is not (always) what you hear: induced gamma band responses reflect cross-modal interactions in familiar object recognition. J Neurosci 27(5):1090–1096

    Article  CAS  PubMed  Google Scholar 

  • Zion Golumbic EM, Poeppel D, Schroeder CE (2012) Temporal context in speech processing and attentional stream selection: a behavioral and neural perspective. Brain Lang 122:151–161

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Ministerio de Economia y Competitividad (PSI2013-42626-P), AGAUR Generalitat de Catalunya (2014SGR856), and the European Research Council (StG-2010 263145) to S.S-F, and the Swiss National Science Foundation (Grant #320030-149982 as well as the National Centre of Competence in Research project “SYNAPSY, The Synaptic Bases of Mental Disease” [Project 51AU40-125759]) and the Swiss Brain League (2014 Research Prize) to MMM. StO receives support from the Dutch Organisation for Scientific Research (Grant 406-11-068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel J. Matusz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ten Oever, S., Romei, V., van Atteveldt, N. et al. The COGs (context, object, and goals) in multisensory processing. Exp Brain Res 234, 1307–1323 (2016). https://doi.org/10.1007/s00221-016-4590-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4590-z

Keywords

Navigation