Skip to main content
Log in

Experimental control of scaling behavior: what is not fractal?

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The list of psychological processes thought to exhibit fractal behavior is growing. Although some might argue that the seeming ubiquity of fractal patterns illustrates their significance, unchecked growth of that list jeopardizes their relevance. It is important to identify when a single behavior is and is not fractal in order to make meaningful conclusions about the processes underlying those patterns. The hypothesis tested in the present experiment is that fractal patterns reflect the enactment of control. Participants performed two steering tasks: steering on a straight track and steering on a circular track. Although each task could be accomplished by holding the steering wheel at a constant angle, steering around a curve may require more constant control, at least from a psychological standpoint. Results showed that evidence for fractal behavior was strongest for the circular track; straight tracks showed evidence of two scaling regions. We argue from those results that, going forward, the goal of the fractal literature should be to bring scaling behavior under experimental control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abney DH, Warlaumont AS, Haussman A, Ross JM, Wallot S (2014) Using nonlinear methods to quantify changes in infant limb movements and vocalizations. Front Psychol 5:1–15

    Google Scholar 

  • Aks DJ, Zelinsky G, Sprott JC (2002) Memory across eye-movements: 1/f dynamics in visual search. Nonlinear Dyn Psychol Life Sci 6:1–25

    Article  Google Scholar 

  • Anastas JR, Stephen DG, Dixon JA (2011) The scaling behavior of hand motions reveals self-organization during an executive function task. Phys A 390:1539–1545

    Article  CAS  Google Scholar 

  • Anderson CM, Lowen SB, Renshaw PF (2006) Emotional task-dependent low-frequency fluctuations and methylphenidate: wavelet scaling analysis of 1/f-type fluctuations in fMRI of the cerebellar vermis. J Neurosci Methods 151(1):52–61

    Article  CAS  PubMed  Google Scholar 

  • Bak P (1997) How nature works. Oxford University Press, Oxford

    Google Scholar 

  • Collins JJ, DeLuca CJ (1993) Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp Brain Res 95:308–318

    Article  CAS  PubMed  Google Scholar 

  • Delignières D, Torre K (2009) Fractal dynamics of human gait: a reassessment of the 1996 data of Hausdorff et al. J Appl Physiol 106(4):1272–1279

    Article  PubMed  Google Scholar 

  • Delignieres D, Ramdani S, Lemoine L, Torre K, Fortes M, Ninot G (2006) Fractal analyses for ‘short’ time series: a re-assessment of classical methods. J Math Psychol 50(6):525–544

    Article  Google Scholar 

  • Delignières D, Torre K, Lemoine L (2008) Fractal models for event-based and dynamical timers. Acta Psychol 127:382–397

    Article  Google Scholar 

  • Dingwell JB, Cusumano JP (2010) Re-interpreting detrended fluctuation analyses of stride-to-stride variability in human walking. Gait Posture 32(3):348–353

    Article  PubMed Central  PubMed  Google Scholar 

  • Eke A, Herman P, Bassingthwaighte JB, Raymond GM, Percival DB, Cannon M, Balla L, Ikrenyi C (2000) Physiological time series: distinguishing fractal noises from motions. Eur J Physiol 439:403–415

    Article  CAS  Google Scholar 

  • Eke A, Herman P, Kocsis I, Kozak LR (2002) Fractal characterization of complexity in temporal physiological signals. Physiol Meas 23:R1–R38

    Article  CAS  PubMed  Google Scholar 

  • Fine JM, Likens AD, Amazeen EL, Amazeen PG (2015) Emergent coordination in complexity matching: local dynamics and global variability. J Exp Psychol Hum Percept Perform 41(3):723–737

    Article  PubMed  Google Scholar 

  • Gates DH, Dingwell JB (2007) Peripheral neuropathy does not alter the fractal dynamics of stride intervals of gait. J Appl Physiol 102(3):965–971

    Article  PubMed Central  PubMed  Google Scholar 

  • Gilden DL (2001) Cognitive emissions of 1/f noise. Psychol Rev 108(1):33–56

    Article  CAS  PubMed  Google Scholar 

  • Gilden DL (2009) Global model analysis of cognitive variability. Cogn Sci 33(8):1441–1467

    Article  PubMed Central  PubMed  Google Scholar 

  • Gilden DL, Hancock H (2007) Response variability in attention-deficit disorders. Psychol Sci 18(9):796–802

    Article  PubMed  Google Scholar 

  • Gilden DL, Thornton T, Mallon MW (1995) 1/f noise in human cognition. Science 267:1834–1839

    Article  Google Scholar 

  • Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PCh, Peng C-K, Stanley HE (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA 99(1):2466–2472

    Article  PubMed Central  PubMed  Google Scholar 

  • Gorman JC, Amazeen PG, Cooke NJ (2010) Team coordination dynamics. Nonlinear Dyn Psychol Life Sci 14(3):265–289

    Google Scholar 

  • Hausdorff JM (2009) Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos Interdiscip J Nonlinear Sci 19(2):026113-1–026113-14

    Article  Google Scholar 

  • Hausdorff JM, Mitchell SL, Firtion R, Peng CK, Cudkowicz ME, Wei JY, Goldberger AL (1997) Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J Appl Physiol 82(1):262–269

    CAS  PubMed  Google Scholar 

  • Hausdorff JM, Ashkenazy Y, Peng C-K, Ivanov PCh, Stanley HE, Goldberger AL (2001) When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations. Phys A 302(1):138–147

    Article  CAS  Google Scholar 

  • Holden JG, Choi I, Amazeen PG, Van Orden G (2011) Fractal 1/ƒ dynamics suggest entanglement of measurement and human performance. J Exp Psychol Hum Percept Perform 37(3):935–948

    Article  PubMed  Google Scholar 

  • Ihlen EAF, Vereijken B (2010) Interaction-dominant dynamics in human cognition: beyond 1/ƒ α fluctuation. J Exp Psychol Gen 139(3):436–463

    Article  PubMed  Google Scholar 

  • Ivanov PC, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Stanley HE, Struzik ZR (2001) From 1/f noise to multifractal cascades in heartbeat dynamics. Chaos Interdiscip J Nonlinear Sci 11(3):641–652

    Article  Google Scholar 

  • Kello CT, Beltz BC, Holden JG, Van Orden GC (2007) The emergent coordination of cognitive function. J Exp Psychol Gen 136(4):551–568

    Article  PubMed  Google Scholar 

  • Kello CT, Anderson GG, Holden JG, Van Orden GC (2008) The pervasiveness of 1/f scaling in speech reflects the metastable basis of cognition. Cogn Sci 32(7):1217–1231

    Article  PubMed  Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior. The MIT Press, Cambridge

    Google Scholar 

  • Kloos H, Van Orden GC (2009) Soft-assembled mechanisms for the grand theory. In: Spencer JP, Thomas M, McClelland J (eds) Toward a new grand theory of development? Connectionism and dynamics systems reconsidered. Oxford University Press, New York, pp 253–267

    Chapter  Google Scholar 

  • Kugler PN, Turvey MT (1987) Information, natural law, and self assembly of rhythmic movement: resources for ecological psychology. Lawrence Erlbaum Associates Inc, Hillsdale

    Google Scholar 

  • Likens AD, Amazeen PG, Stevens R, Galloway T, Gorman JC (2014) Neural signatures of team coordination are revealed by multifractal analysis. Soc Neurosci 9(3):219–234

    Article  PubMed  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  • Marmelat V, Delignières D (2012) Strong anticipation: complexity matching in interpersonal coordination. Exp Brain Res 222:137–148

    Article  PubMed  Google Scholar 

  • Marmelat V, Torre K, Delignières D (2012) Relative roughness: an index for testing the suitability of the monofractal model. Front Physiol 3(208):1–11

    Google Scholar 

  • Marmelat V, Delignières D, Torre K, Beek PJ, Daffertshofer A (2014) ‘Human paced’ walking: followers adopt stride time dynamics of leaders. Neurosci Lett 564:67–71

    Article  CAS  PubMed  Google Scholar 

  • Papo D (2013) Time scales in cognitive neuroscience. Front Physiol 4(86):1–10

    Google Scholar 

  • Peng C-K, Buldyrev SV, Havlin S, Simons S, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685–1689

    Article  CAS  Google Scholar 

  • Peng C-K, Mietus JE, Liu Y, Lee C, Hausdorff JM, Stanley HE, Lipsitz LA (2002) Quantifying fractal dynamics of human respiration: age and gender effects. Ann Biomed Eng 30(5):683–692

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra BS, Dutt DN, Halahalli HN, John JP (2009) Complexity analysis of EEG in patients with schizophrenia using fractal dimension. Physiol Meas 30(8):795–808

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Turvey MT (2002) Variability and determinism in motor behavior. J Mot Behav 34(2):99–125

    Article  PubMed  Google Scholar 

  • Solé R, Goodwin B (2000) Signs of life: How complexity pervades biology. Basic Books, New York

    Google Scholar 

  • Stephen DG, Anastas J (2011) Fractal fluctuations in gaze speed visual search. Atten Percept Psychophys 73(3):666–677

    Article  PubMed  Google Scholar 

  • Stephen DG, Mirman D (2010) Interactions dominate the dynamics of visual cognition. Cognition 115(1):154–165

    Article  PubMed Central  PubMed  Google Scholar 

  • Stevens R, Gorman JC, Amazeen P, Likens A, Galloway T (2013) The organizational neurodynamics of teams. Nonlinear Dyn Psychol Life Sci 17(1):67–86

    Google Scholar 

  • Torre K, Delignières D (2008) Distinct ways of timing movements in bimanual coordination tasks: contribution of serial correlation analysis and implications for modeling. Acta Psychol 129:284–296

    Article  Google Scholar 

  • Torre K, Wagenmakers E-J (2009) Theories and models of 1/f β noise in human movement science. Hum Mov Sci 28:297–318

    Article  PubMed  Google Scholar 

  • Torre K, Delignières D, Lemoine L (2007) 1/f β fluctuations in bimanual coordination: an additional challenge for modeling. Exp Brain Res 183(2):225–234

    Article  PubMed  Google Scholar 

  • Torre K, Balasubramaniam R, Rheaume N, Lemoine L, Zelaznik HN (2011) Long-range correlation properties in motor timing are individual and task specific. Psychon Bull Rev 18(2):339–346

    Article  PubMed  Google Scholar 

  • Treffner P, Kelso JAS (1999) Dynamic encounters: long memory during functional stabilization. Ecol Psychol 11(2):103–137

    Article  Google Scholar 

  • Valdez AB, Amazeen EL (2008) Using 1/f noise to examine planning and control in a discrete aiming task. Exp Brain Res 187:303–319

    Article  PubMed  Google Scholar 

  • Valdez AB, Amazeen EL (2009) Target dimension affects 1/f noise in aiming. Nonlinear Dyn Psychol Life Sci 13:369–392

    Google Scholar 

  • Valdez AB, Amazeen EL (2010) Motor imagery may incorporate trial-to-trial error. J Mot Behav 42:241–256

    Article  PubMed  Google Scholar 

  • Van Orden G (2010) Voluntary performance. Medicina 46(9):581–594

    PubMed  Google Scholar 

  • Van Orden GC, Stephen DG (2012) Is cognitive science usefully cast as complexity science? Top Cogn Sci 4(1):3–6

    Article  PubMed  Google Scholar 

  • Van Orden GC, Holden J, Turvey MT (2003) Self-organization of cognitive performance. J Exp Psychol Gen 132:331–350

    Article  PubMed  Google Scholar 

  • Wagenmakers E-J, Farrell S, Ratcliff R (2004) Estimation and interpretation of 1/f α noise in human cognition. Psychon Bull Rev 11(4):579–615

    Article  PubMed Central  PubMed  Google Scholar 

  • Wagenmakers E-J, van der Maas HL, Farrell S (2012) Abstract concepts require concrete models: why cognitive scientists have not yet embraced nonlinearly coupled, dynamical, self-organized critical, synergistic, scale-free, exquisitely context-sensitive, interaction-dominant, multifractal, interdependent brain–body–niche systems. Top Cogn Sci 4(1):87–93

    Article  PubMed  Google Scholar 

  • Woyshville MJ, Calabrese JR (1994) Quantification of occipital EEG changes in Alzheimer’s disease utilizing a new metric: the fractal dimension. Biol Psychiatry 35(6):381–387

    Article  CAS  PubMed  Google Scholar 

  • Yerkes RM, Dodson JD (1908) The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol 18(5):459–482

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron D. Likens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likens, A.D., Fine, J.M., Amazeen, E.L. et al. Experimental control of scaling behavior: what is not fractal?. Exp Brain Res 233, 2813–2821 (2015). https://doi.org/10.1007/s00221-015-4351-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4351-4

Keywords

Navigation