Skip to main content
Log in

Affective motivational direction drives asymmetric frontal hemisphere activation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Decades of research have shown that the left- and right-frontal cortical regions are asymmetrically involved in affective processing. Specifically, this past work has demonstrated that greater left-frontal activation is related to positive-approach, and greater right-frontal activation is related to negative-withdrawal. However, much of this past work confounded motivation and affective valence. The current experiment sought to illuminate whether frontal asymmetry is related to motivation or affective valence by examining frontal-lateralized late positive potentials (f-LPPs) and frontal cortical alpha power activation to approach-positive, approach-negative, and withdrawal-negative affects in the same participants. Results revealed that f-LPPs to approach-positive and approach-negative pictures were larger in left- (vs. right-) frontal regions, whereas f-LPPs to withdrawal-negative pictures did not differ between frontal regions. In addition, midline LPPs to approach-positive and approach-negative pictures related to greater left-frontal cortical activation. Together, these results suggest that greater relative left-frontal activation is associated with positive and negative approach-motivated states in the same participants. More broadly, these results are consistent with conceptual models that asymmetric hemisphere activation is related to motivational direction, rather than affective valence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We conceptualize motivation as the impetus an organism experiences to go toward versus the motivation to freeze or move away. Approach motivation has been associated with the behavioral approach system (BAS; Gray 1970, 1987; Gray and McNaughton 2000), behavioral activation system (also BAS; Fowles 1987), or a behavioral facilitation system (Depue and Collins 1999). Withdrawal motivation has been associated with the behavioral inhibition system (BIS; Gray 1970, 1987). This system is thought to modulate reactions to aversive stimuli and generate negative affective states such as fear and anxiety. The distinct motivational responses to approach or avoid are inherent in affective responses.

  2. Some past research has investigated hemispheric asymmetry using beta frequency band power (Swann et al. 2009). The majority of this work has been focused on posterior asymmetry, but some has also examined frontal asymmetry (Hofman and Schutter 2012; Keune et al. 2012). We focused on the alpha band because the majority of studies examining frontal asymmetry have used the alpha band and frontal alpha asymmetry is supported by a variety of methods (e.g., lesion studies, TMS, fMRI).

  3. IAPS picture numbers: neutral pictures (2038, 2102, 2190, 2191, 2200, 2210, 2214, 2215, 2381, 2385, 2396, 2397, 2440, 2441, 2493, 2495, 2499, 2514, 2516, 2595, 2850, 2870, 2880, 2890, 5471, 5510, 5531, 5533, 5535, 5740, 6150, 7000, 7002, 7004, 7006, 7010, 7020, 7034, 7035, 7038, 7041, 7043, 7052, 7053, 7056, 7058, 7059, 7080, 7090, 7100, 7160, 7161, 7170, 7175, 7179, 7182, 7185, 7187, 7211, 7217, 7233, 7235, 7242, 7247, 7248, 7249, 7500, 7547, 7550, 7640, 7830, 7950, 9070); withdrawal-negative pictures (1270, 1274, 1275, 1280, 1617, 3017, 3061, 3160, 3210, 3215, 7359, 7360, 7361, 7380, 9008, 9042, 9110, 9180, 9182, 9301, 9320, 9341, 9373, 9390, 9432, 9440, 9480, 9490, 9582, 9592, 9594, 9830); and approach-positive pictures (1441, 1463, 1710, 1750, 1920, 2040, 2070, 2071, 2080, 2091, 2150, 2165, 2340, 2345, 2550, 4608, 4650, 4652, 4660, 4676, 4680, 4687, 4689, 4694, 4695, 7283, 7330, 7340, 7390, 7402, 7410, 7430).

References

  • Ahern GL, Schwartz GE (1985) Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis. Neuropsychologia 23:745–755

    Article  CAS  PubMed  Google Scholar 

  • Balconi M, Falbo X, Conte X (2012) BIS and BAS correlates with psychophysiological and cortical response systems during aversive and appetitive emotional stimuli processing. Motiv Emot 36:218–231

    Article  Google Scholar 

  • Bartholow BD, Pearson MA, Gratton G, Fabiani M (2003) Effects of alcohol on person perception: a social cognitive neuroscience approach. J Personal Soc Psychol 85:627–638

    Article  Google Scholar 

  • Bradley MM (2009) Natural selective attention: orienting and emotion. Psychophysiology 46:1–11

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradley MM, Lang PJ (2007) Emotion and motivation. In: Cacioppo JT, Tassinary LG, Berntson G (eds) Handbook of psychophysiology, 3rd edn. Cambridge University Press, New York, pp 581–607

    Chapter  Google Scholar 

  • Buss KA, Malmstadt Schumacher JR, Dolski I, Kalin NH, Goldsmith HH, Davidson RJ (2003) Right frontal brain activity, cortisol, and withdrawal behavior in 6-month-old infants. Behav Neurosci 117:11–20

    Article  CAS  PubMed  Google Scholar 

  • Carver CS, Harmon-Jones E (2009) Anger is an approach-related affect: evidence and implications. Psychol Bull 135:183–204

    Article  PubMed  Google Scholar 

  • Coan JA, Allen JJB (2004) Frontal EEG asymmetry as a moderator and mediator of emotion. Biol Psychol 67:7–49

    Article  PubMed  Google Scholar 

  • Cook IA, O’Hara R, Uijtdehaage SHJ, Mandelkern M, Leuchter AF (1998) Assessing the accuracy of topographic EEG mapping for determining local brain function. Electroencephalogr Clin Neurophysiol 107:408–414

    Article  CAS  PubMed  Google Scholar 

  • Cunningham WA, Espinet SD, DeYoung CG, Zelazo PD (2005) Attitudes to the right- and left: frontal ERP asymmetries associated with stimulus valence and processing goals. NeuroImage 28:827–834

    Article  PubMed  Google Scholar 

  • Davidson RJ, Chapman JP, Chapman LJ, Henriques JB (1990a) Asymmetrical brain electrical activity discriminates between psychometrically-matched verbal and spatial cognitive tasks. Psychophysiology 27:528–543

    Article  CAS  PubMed  Google Scholar 

  • Davidson RJ, Ekman P, Saron CD, Senulis JA, Friesen WV (1990b) Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology I. J Personal Soc Psychol 58:330–341

    Article  CAS  Google Scholar 

  • Depue RA, Collins PF (1999) Neuobiology of the structure of personality: dopamine, facilitation of incentive motivation, and extraversion. Behav Brain Sci 22:491–569

    Google Scholar 

  • Elgavish E, Halpern D, Dikman Z, Allen JJB (2003) Does frontal EEG asymmetry moderate or mediate responses to the international affective picture system (IAPS)? Psychophysiology 40:s38

    Google Scholar 

  • Ferrari V, Codispoti M, Cardinale R, Bradley MM (2008) Directed and motivated attention during processing of natural scenes. J Cogn Neurosci 20:1753–1761

    Article  PubMed  Google Scholar 

  • Fowles DC (1987) Application of a behavioral theory of motivation to the concepts of anxiety and impulsivity. J Res Personal 21:417–435

    Article  Google Scholar 

  • Gable PA, Harmon-Jones E (2008a) Approach-motivated positive affect reduces breadth of attention. Psychol Sci 19:476–482

    Article  PubMed  Google Scholar 

  • Gable PA, Harmon-Jones E (2008b) Relative left frontal activation to appetitive stimuli: considering the role of individual differences. Psychophysiology 45:275–278

    Article  PubMed  Google Scholar 

  • Gable PA, Harmon-Jones E (2009) Postauricular reflex responses to pictures varying in valence and arousal. Psychophysiology 46:487–490

    Article  PubMed  Google Scholar 

  • Gable PA, Harmon-Jones E (2010) Late positive potential to appetitive stimuli and local attentional bias. Emotion 10:441–446

    Article  PubMed  Google Scholar 

  • Gable PA, Harmon-Jones E (2011) Attentional states influence early neural responses associated with motivational processes: local vs. global attentional scope and N1 amplitude to appetitive stimuli. Biol Psychol 87:303–305

    Article  PubMed  Google Scholar 

  • Gable PA, Harmon-Jones E (2013a) Does arousal per se account for the influence of appetitive stimuli on attentional scope and the late positive potential. Psychophysiology 50:344–350

    Article  PubMed  Google Scholar 

  • Gable PA, Harmon-Jones E (2013b) Trait behavioral approach sensitivity (BAS) relates to early (<150 ms) electrocortical responses to appetitive stimuli. Soc Cogn Affect Neurosci 8:795–798

    Article  PubMed  Google Scholar 

  • Gable PA, Poole BD (2012a) Influence of trait behavioral inhibition and behavioral approach motivation systems on the LPP and frontal asymmetry to anger pictures. Soc Cogn Affect Neurosci. doi:10.1093/scan/nss130

    Google Scholar 

  • Gable PA, Poole BD (2012b) Time flies when you’re having approach-motivated fun: effects on motivational intensity on time perception. Psychol Sci 23:879–886

    Article  PubMed  Google Scholar 

  • Gable PA, Poole BD, Cook MS (2013) Asymmetrical hemisphere activation enhances global-local processing. Brain Cogn 83:337–341

    Article  PubMed  Google Scholar 

  • Gray JA (1970) The psychophysiological basis of introversion-extraversion. Behav Res Ther 8:249–266

    Article  CAS  PubMed  Google Scholar 

  • Gray JA (1987) The psychology of fear and stress, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Gray JA, McNaughton N (2000) The neuropsychology of anxiety. Oxford University Press, Oxford

    Google Scholar 

  • Hagemann D, Ewald N, Becker G, Maier S, Bartussek D (1998) Frontal brain asymmetry and affective style: a conceptual replication. Psychophysiology 35:372–388

    Article  CAS  PubMed  Google Scholar 

  • Hajcak G, Dunning JP, Foti D (2007) Neural response to emotional pictures is unaffected by concurrent task difficulty: an event-related potential study. Behav Neurosci 121:1156–1162

    Article  PubMed  Google Scholar 

  • Hajcak G, Weinberg A, MacNamara A, Foti D (2012) ERPs and the study of emotion. In: Luck SJ, Kappenman ES (eds) Oxford handbook of ERP components. Oxford University Press, New York

    Google Scholar 

  • Harmon-Jones E (2004) On the relationship of frontal brain activity and anger: examining the role of attitude toward anger. Cogn Emot 18:337–361

    Article  Google Scholar 

  • Harmon-Jones E (2006) Unilateral hand contractions cause contralateral alpha power suppression and approach motivational affective experience. Psychophysiology 43:598–603

    Article  PubMed  Google Scholar 

  • Harmon-Jones E (2007) Trait anger predicts relative left frontal cortical activation to anger-inducing stimuli. Int J Psychophysiol 66:154–160

    Article  PubMed  Google Scholar 

  • Harmon-Jones E, Allen JJB (1997) Behavioral activation sensitivity and resting frontal EEG asymmetry: covariation of putative indicators related to risk for mood disorders. J Abnorm Psychol 106:159–163

    Article  CAS  PubMed  Google Scholar 

  • Harmon-Jones E, Allen JJB (1998) Anger and prefrontal brain activity: EEG asymmetry consistent with approach motivation despite negative affective valence. J Personal Soc Psychol 74:1310–1316

    Article  CAS  Google Scholar 

  • Harmon-Jones E, Gable PA (2009) Neural activity underlying the effect of approach-motivated positive affect on narrowed attention. Psychol Sci 20:406–409

    Article  PubMed  Google Scholar 

  • Harmon-Jones E, Sigelman J (2001) State anger and prefrontal brain activity: evidence that insult-related relative left-prefrontal activation is associated with experienced anger and aggression. J Personal Soc Psychol 80:797–803

    Article  CAS  Google Scholar 

  • Harmon-Jones E, Vaughn-Scott K, Mohr S, Sigelman J, Harmon-Jones C (2004) The effect of manipulated sympathy and anger on left and right frontal cortical activity. Emotion 4:1–7

    Article  Google Scholar 

  • Harmon-Jones E, Lueck L, Fearn M, Harmon-Jones C (2006) The effect of personal relevance and approach-related action expectation on relative left frontal cortical activity. Psychol Sci 17:434–440

    Article  PubMed  Google Scholar 

  • Harmon-Jones E, Harmon-Jones C, Fearn M, Sigelman JD, Johnson P (2008) Left frontal cortical activation and spreading of alternatives: tests of the action-based model of dissonance. J Personal Soc Psychol 94:1–15

    Article  Google Scholar 

  • Harmon-Jones E, Gable PA, Peterson CK (2010) The role of asymmetric frontal cortical activity in emotion-related phenomena: a review and update. Biol Psychol 84:451–462

    Article  PubMed  Google Scholar 

  • Harmon-Jones E, Gable PA, Price TF (2011a) Toward an understanding of the influence of affective states on attentional tuning: comment on Friedman and Förster (2010). Psychol Bull 137:508–512

    Article  PubMed  Google Scholar 

  • Harmon-Jones E, Harmon-Jones C, Amodio DM, Gable PA (2011b) Attitudes toward emotions: conceptualization and measurement of evaluations of specific emotions. J Personal Soc Psychol 101:1332–1350

    Article  Google Scholar 

  • Hewig J, Hagemann D, Seifert J, Naumann E, Bartussek D (2004) On the selective relation of frontal cortical asymmetry and anger-out versus anger-control. J Personal Soc Psychol 87:926–939

    Article  Google Scholar 

  • Hofman D, Schutter DJLG (2012) Asymmetrical frontal resting-state beta oscillations predict trait aggressive tendencies and behavioral inhibition. SCAN 7:850–857

    PubMed Central  PubMed  Google Scholar 

  • Izard CE (1991) The psychology of emotions. Plenum Press, New York

    Book  Google Scholar 

  • Jackson DC, Mueller CJ, Dolski I, Dalton KM, Nitschke JB, Urry HL, Rosenkranz MA, Ryff CD, Singer BH, Davidson RJ (2003) Now you feel it, now you don’t: frontal brain electrical asymmetry and individual differences in emotion regulation. Psychol Sci 14:612–617

    Article  PubMed  Google Scholar 

  • Keune PM, van der Heiden L, Várkuti B, Konicar L, Veit R, Birbaumer N (2012) Prefrontal brain asymmetry and aggression in imprisoned violent offenders. Neurosci Lett 515:191–195

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W, Doppelmayr M, Pachinger T, Ripper B (1997) Brain oscillations and human memory: EEG correlates in the upper alpha and theta band. Neurosci Lett 238:9–12

    Article  CAS  PubMed  Google Scholar 

  • Lakens D, Fockenberg DA, Lemmens KPH, Ham J, Midden CJH (2013) Brightness differences influence the evaluation of affective pictures. Cogn Emot 27:1225–1246

    Article  PubMed  Google Scholar 

  • Lang PJ (1995) The emotion probe. Am Psychol 50:372–385

    Article  CAS  PubMed  Google Scholar 

  • Lang PJ, Bradley MM, Cuthbert BN (2005) International affective picture system (IAPS): digitized photographs, instruction manual and affective ratings. technical report A-6. University of Florida, Gainesville, FL

  • Lerner JS, Keltner D (2001) Fear, anger, and risk. J Personal Soc Psychol 81:146–159

    Article  CAS  Google Scholar 

  • Lindsley DB, Wicke JD (1974) The electroencephalogram: autonomous electrical activity in man and animals. In: Thompson R, Patterson MN (eds) Bioelectric recording techniques. Academic Press, New York, pp 3–79

    Chapter  Google Scholar 

  • MacNamara A, Hajcak G (2009) Anxiety and spatial attention moderate the electrocortical response to aversive pictures. Neuropsychologia 47:2975–2980

    Article  PubMed  Google Scholar 

  • Moratti S, Saugar C, Strange BA (2011) Prefrontal-occipital coupling underlies late latency human neuronal responses to emotion. J Neurosci 31:17278–17286

    Article  CAS  PubMed  Google Scholar 

  • Murphy FC, Nimmo-Smith I, Lawrence AD (2003) Functional neuroanatomy of emotions: a meta-analysis. Cogn Affect Behav Neurosci 3:207–233

    Article  PubMed  Google Scholar 

  • Olofsson JK, Nordin S, Sequeira H, Polich J (2008) Affective picture processing: an integrative review of ERP findings. Biol Psychol 77:247–265

    Article  PubMed Central  PubMed  Google Scholar 

  • Peterson CK, Shackman AJ, Harmon-Jones E (2008) The role of asymmetrical frontal cortical activity in aggression. Psychophysiology 45:86–92

    PubMed  Google Scholar 

  • Piazzagalli DA, Sherwood RJ, Henriques JB, Davidson RJ (2005) Frontal brain asymmetry and reward responsiveness: a source-localization study. Psychol Sci 16:805–813

    Article  Google Scholar 

  • Pizzagalli D, Shackman AJ, Davidson RJ (2003) The functional neuroimaging of human emotion: asymmetric contributions of cortical and subcortical circuitry. In: Hugdahl K, Davidson RJ (eds) The asymmetrical brain. MIT Press, Cambridge, pp 511–532

    Google Scholar 

  • Sabatinelli D, Lang PJ, Keil A, Bradley MM (2007) Emotional perception: correlation of functional MRI and event-related potentials. Cereb Cortex 17:1085–1091

    Article  PubMed  Google Scholar 

  • Sabatinelli D, Keil A, Frank DW, Lang PJ (2013) Emotional perception: correspondence of early and late event-related potentials with cortical and subcortical functional MRI. Biol Psychol 92:513–519

    Article  PubMed Central  PubMed  Google Scholar 

  • Schutter DJLG, de Weijer AD, Meuwese JDI, Morgan B, van Honk J (2008) Interrelations between motivational stance, cortical excitability, and the frontal electroencephalogram asymmetry of emotion: a transcranial magnetic stimulation study. Hum Brain Mapp 29:574–580

    Article  PubMed  Google Scholar 

  • Semlitsch HV, Anderer P, Schuster P, Presslich O (1986) A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology 23:695–703

    Article  CAS  PubMed  Google Scholar 

  • Silva JR, Pizzagalli DA, Larson CL, Jackson DC, Davidson RJ (2002) Frontal brain asymmetry in restrained eaters. J Abnorm Psychol 111:676–681

    Article  PubMed  Google Scholar 

  • Sutton SK, Davidson RJ (1997) Prefrontal brain asymmetry: a biological substrate of the behavioral approach and inhibition systems. Psychol Sci 8:204–210

    Article  Google Scholar 

  • Swann N, Tandon N, Canolty R, Ellmore TM, McEvoy LK, Dreyer S, DiSano M, Aron AR (2009) Intracranial EEG reveals a time- and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses. J Neurosci 29:12675–12685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Terzian H, Cecotto C (1959) Determination and study of hemisphere dominance by means of intracarotid sodium amytal injection in man: II. Electroencephalographic effects. Bolletino della Societa Ztaliana Sperimentale 35:1626–1630

    CAS  Google Scholar 

  • Tomarken AJ, Davidson RJ, Henriques JB (1990) Resting frontal brain asymmetry predicts affective responses to films. J Personal Soc Psychol 59:791–801

    Article  CAS  Google Scholar 

  • Tomarken AJ, Davidson RJ, Wheeler RE, Doss RC (1992) Individual differences in anterior brain asymmetry and fundamental dimensions of emotion. J Personal Soc Psychol 62:676–687

    Article  CAS  Google Scholar 

  • Watson D, Wiese D, Vaidya J, Tellegen A (1999) The two general activation systems of affect: structural findings, evolutionary considerations, and psycho-biological evidence. J Personal Soc Psychol 76:820–838

    Article  Google Scholar 

  • Weinberg A, Ferri J, Hajcak G (2012) Interactions between attention and emotion: Reflections on the late positive potential. Unpublished manuscript

  • Wheeler RE, Davidson RJ, Tomarken AJ (1993) Frontal brain asymmetry and emotional reactivity: a biological substrate of affective style. Psychophysiology 30:82–89

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan D. Poole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poole, B.D., Gable, P.A. Affective motivational direction drives asymmetric frontal hemisphere activation. Exp Brain Res 232, 2121–2130 (2014). https://doi.org/10.1007/s00221-014-3902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-3902-4

Keywords

Navigation