Skip to main content
Log in

Age-related changes in the bimanual advantage and in brain oscillatory activity during tapping movements suggest a decline in processing sensory reafference

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Deficits in the processing of sensory reafferences have been suggested as accounting for age-related decline in motor coordination. Whether sensory reafferences are accurately processed can be assessed based on the bimanual advantage in tapping: because of tapping with an additional hand increases kinesthetic reafferences, bimanual tapping is characterized by a reduced inter-tap interval variability than unimanual tapping. A suppression of the bimanual advantage would thus indicate a deficit in sensory reafference. We tested whether elderly indeed show a reduced bimanual advantage by measuring unimanual (UM) and bimanual (BM) self-paced tapping performance in groups of young (n = 29) and old (n = 27) healthy adults. Electroencephalogram was recorded to assess the underlying patterns of oscillatory activity, a neurophysiological mechanism advanced to support the integration of sensory reafferences. Behaviorally, there was a significant interaction between the factors tapping condition and age group at the level of the inter-tap interval variability, driven by a lower variability in BM than UM tapping in the young, but not in the elderly group. This result indicates that in self-paced tapping, the bimanual advantage is absent in elderly. Electrophysiological results revealed an interaction between tapping condition and age group on low beta band (14–20 Hz) activity. Beta activity varied depending on the tapping condition in the elderly but not in the young group. Source estimations localized this effect within left superior parietal and left occipital areas. We interpret our results in terms of engagement of different mechanisms in the elderly depending on the tapping mode: a ‘kinesthetic’ mechanism for UM and a ‘visual imagery’ mechanism for BM tapping movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alegre M, Gurtubay IG, Labarga A, Iriarte J, Malanda A, Artieda J (2003) Alpha and beta oscillatory changes during stimulus-induced movement paradigms: effect of stimulus predictability. NeuroReport 14:381–385

    Article  PubMed  Google Scholar 

  • Alegre M, de Gurtubay IG, Labarga A, Iriarte J, Malanda A, Artieda J (2004) Alpha and beta oscillatory activity during a sequence of two movements. Clin Neurophysiol 115:124–130

    Article  PubMed  Google Scholar 

  • Arzy S, Allali G, Brunet D, Michel CM, Kaplan PW, Seeck M (2010) Antiepileptic drugs modify power of high EEG frequencies and their neural generators. Eur J Neurol 17:1308–1312

    Article  CAS  PubMed  Google Scholar 

  • Aschersleben G, Prinz W (1995) Synchronizing actions with events: the role of sensory information. Percept Psychophys 57:305–317

    Article  CAS  PubMed  Google Scholar 

  • Bangert AS, Reuter-Lorenz PA, Walsh CM, Schachter AB, Seidler RD (2010) Bimanual coordination and aging: neurobehavioral implications. Neuropsychologia 48:1165–1170

    Article  PubMed  Google Scholar 

  • Beaule V, Tremblay S, Theoret H (2012) Interhemispheric control of unilateral movement. Neural Plast 2012:627816

    Article  PubMed  Google Scholar 

  • Berard JR, Fung J, McFadyen BJ, Lamontagne A (2009) Aging affects the ability to use optic flow in the control of heading during locomotion. Exp Brain Res 194:183–190

    Article  PubMed  Google Scholar 

  • Bernasconi F, Manuel AL, Murray MM, Spierer L (2011) Pre-stimulus beta oscillations within left posterior sylvian regions impact auditory temporal order judgment accuracy. Int J Psychophysiol 79:244–248

    Article  PubMed  Google Scholar 

  • Blakemore SJ, Sirigu A (2003) Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res 153:239–245

    Article  PubMed  Google Scholar 

  • Bugnariu N, Fung J (2007) Aging and selective sensorimotor strategies in the regulation of upright balance. J Neuroeng Rehabil 4:19

    Article  PubMed  Google Scholar 

  • Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17:85–100

    Article  PubMed  Google Scholar 

  • Craik FIM, Byrd M (1982) Aging and cognitive processes. Plenum Press, New York

    Book  Google Scholar 

  • de Lange FP, Jensen O, Bauer M, Toni I (2008) Interactions between posterior gamma and frontal alpha/beta oscillations during imagined actions. Front Human Neurosci 2:7

    Google Scholar 

  • Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2003) Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. NeuroImage 19:764–776

    Article  PubMed  Google Scholar 

  • Degardin A, Devos D, Cassim F, Bourriez JL, Defebvre L, Derambure P, Devanne H (2011) Deficit of sensorimotor integration in normal aging. Neurosci Lett 498:208–212

    Article  CAS  PubMed  Google Scholar 

  • Derambure P, Defebvre L, Bourriez JL, Cassim F, Guieu JD (1999) Event-related desynchronization and synchronization. Reactivity of electrocortical rhythms in relation to the planning and execution of voluntary movement. Neurophysiol Clin 29:53–70

    Article  CAS  PubMed  Google Scholar 

  • Diener HC, Dichgans J, Guschlbauer B, Mau H (1984) The significance of proprioception on postural stabilization as assessed by ischemia. Brain Res 296:103–109

    Article  CAS  PubMed  Google Scholar 

  • Drewing K, Aschersleben G (2003) Reduced timing variability during bimanual coupling: a role for sensory information. Q J Exp Psychol 56:329–350

    Article  Google Scholar 

  • Engel AK, Fries P (2010) Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol 20:156–165

    Article  CAS  PubMed  Google Scholar 

  • Ferrell WR, Crighton A, Sturrock RD (1992) Position sense at the proximal interphalangeal joint is distorted in patients with rheumatoid arthritis of finger joints. Exp Physiol 77:675–680

    CAS  PubMed  Google Scholar 

  • Fitzpatrick R, McCloskey DI (1994) Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. J Physiol 478(Pt 1):173–186

    PubMed  Google Scholar 

  • Gaetz W, Macdonald M, Cheyne D, Snead OC (2010) Neuromagnetic imaging of movement-related cortical oscillations in children and adults: age predicts post-movement beta rebound. NeuroImage 51:792–807

    Article  CAS  PubMed  Google Scholar 

  • Galganski ME, Fuglevand AJ, Enoka RM (1993) Reduced control of motor output in a human hand muscle of elderly subjects during submaximal contractions. J Neurophysiol 69:2108–2115

    CAS  PubMed  Google Scholar 

  • Goble DJ, Coxon JP, Wenderoth N, Van Impe A, Swinnen SP (2009) Proprioceptive sensibility in the elderly: degeneration, functional consequences and plastic-adaptive processes. Neurosci Biobehav Rev 33:271–278

    Article  PubMed  Google Scholar 

  • Grave de Peralta Menendez R, Gonzalez Andino S, Lantz G, Michel CM, Landis T (2001) Noninvasive localization of electromagnetic epileptic activity. I. Method descriptions and simulations. Brain Topogr 14:131–137

    Article  CAS  PubMed  Google Scholar 

  • Grave de Peralta Menendez R, Murray MM, Michel CM, Martuzzi R, Gonzalez Andino SL (2004) Electrical neuroimaging based on biophysical constraints. NeuroImage 21:527–539

    Article  PubMed  Google Scholar 

  • Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J (2009) Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum Brain Mapp 30:2157–2172

    Article  PubMed  Google Scholar 

  • Helmuth LL, Ivry RB (1996) When two hands are better than one: reduced timing variability during bimanual movements. J Exp Psychol Hum Percept Perform 22:278–293

    Article  CAS  PubMed  Google Scholar 

  • Heuninckx S, Wenderoth N, Swinnen SP (2008) Systems neuroplasticity in the aging brain: recruiting additional neural resources for successful motor performance in elderly persons. J Neurosci 28:91–99

    Article  CAS  PubMed  Google Scholar 

  • Jancke L, Peters M, Schlaug G, Posse S, Steinmetz H, Muller-Gartner H (1998) Differential magnetic resonance signal change in human sensorimotor cortex to finger movements of different rate of the dominant and subdominant hand. Cogn Brain Res 6:279–284

    Article  CAS  Google Scholar 

  • Keinrath C, Wriessnegger S, Muller-Putz GR, Pfurtscheller G (2006) Post-movement beta synchronization after kinesthetic illusion, active and passive movements. Int J Psychophysiol 62:321–327

    Article  PubMed  Google Scholar 

  • Kilavik BE, Zaepffel M, Brovelli A, Mackay WA, Riehle A (2013) The ups and downs of beta oscillations in sensorimotor cortex. Exp Neurol 245:15–26

    Google Scholar 

  • Klimesch W, Doppelmayr M, Schimke H, Ripper B (1997) Theta synchronization and alpha desynchronization in a memory task. Psychophysiology 34:169–176

    Article  CAS  PubMed  Google Scholar 

  • Koeneke S, Lutz K, Wustenberg T, Jancke L (2004) Bimanual versus unimanual coordination: what makes the difference? NeuroImage 22:1336–1350

    Article  PubMed  Google Scholar 

  • Krause V, Bashir S, Pollok B, Caipa A, Schnitzler A, Pascual-Leone A (2012) 1 Hz rTMS of the left posterior parietal cortex (PPC) modifies sensorimotor timing. Neuropsychologia 50:3729–3735

    Article  PubMed  Google Scholar 

  • Lacquaniti F, Guigon E, Bianchi L, Ferraina S, Caminiti R (1995) Representing spatial information for limb movement: role of area 5 in the monkey. Cereb Cortex 5:391–409

    Article  CAS  PubMed  Google Scholar 

  • Lehmann D, Michel CM (1990) Intracerebral dipole source localization for FFT power maps. Electroencephalogr Clin Neurophysiol 76:271–276

    Article  CAS  PubMed  Google Scholar 

  • Lewis PA, Miall RC (2003) Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol 13:250–255

    Article  CAS  PubMed  Google Scholar 

  • Li SC, Lindenberger U (1999) Cross-level unification : a computational exploration of the link between deterioration of neurotransmitter systems and dedifferentiation of cognitive abilities in old age. In: Nilsson LGM, Markowitsch H (eds) Cognitive neuroscience of memory. Hogrefe & Hube, Seattle, pp 103–146

    Google Scholar 

  • Madhavan S, Shields RK (2005) Influence of age on dynamic position sense: evidence using a sequential movement task. Exp Brain Res 164:18–28

    Article  PubMed  Google Scholar 

  • Mattay VS, Fera F, Tessitore A, Hariri AR, Das S, Callicott JH, Weinberger DR (2002) Neurophysiological correlates of age-related changes in human motor function. Neurology 58:630–635

    Article  CAS  PubMed  Google Scholar 

  • McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR (2000) Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr 12:177–186

    Article  CAS  PubMed  Google Scholar 

  • Michel CM, Murray MM (2012) Towards the utilization of EEG as a brain imaging tool. NeuroImage 61:371–385

    Article  PubMed  Google Scholar 

  • Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R (2004) EEG source imaging. Clin Neurophysiol 115:2195–2222

    Article  PubMed  Google Scholar 

  • Muller GR, Neuper C, Rupp R, Keinrath C, Gerner HJ, Pfurtscheller G (2003) Event-related beta EEG changes during wrist movements induced by functional electrical stimulation of forearm muscles in man. Neurosci Lett 340:143–147

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa K, Aokage Y, Fukuri T, Kawahara Y, Hashizume A, Kurisu K, Yuge L (2011) Neuromagnetic beta oscillation changes during motor imagery and motor execution of skilled movements. NeuroReport 22:217–222

    Article  PubMed  Google Scholar 

  • Neuper C, Pfurtscheller G (1996) Post-movement synchronization of beta rhythms in the EEG over the cortical foot area in man. Neurosci Lett 216:17–20

    Article  CAS  PubMed  Google Scholar 

  • Neuper C, Pfurtscheller G (2001) Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int J Psychophysiol 43:41–58

    Article  CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Perrin F, Pernier J, Bertrand O, Giard MH, Echallier JF (1987) Mapping of scalp potentials by surface spline interpolation. Electroencephalogr Clin Neurophysiol 66:75–81

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G (2001) Functional brain imaging based on ERD/ERS. Vision Res 41:1257–1260

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Stancak A Jr, Neuper C (1996) Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 24:39–46

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Neuper C, Andrew C, Edlinger G (1997) Foot and hand area mu rhythms. Int J Psychophysiol 26:121–135

    Article  CAS  PubMed  Google Scholar 

  • Reuter-Lorenz PA, Lustig C (2005) Brain aging: reorganizing discoveries about the aging mind. Curr Opin Neurobiol 15:245–251

    Article  CAS  PubMed  Google Scholar 

  • Ritter P, Moosmann M, Villringer A (2009) Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum Brain Mapp 30:1168–1187

    Article  PubMed  Google Scholar 

  • Sasaki H, Masumoto J, Inui N (2011) Effects of aging on control of timing and force of finger tapping. Mot Control 15:175–186

    Google Scholar 

  • Sauseng P, Gerloff C, Hummel FC (2013) Two brakes are better than one: the neural bases of inhibitory control of motor memory traces. NeuroImage 65:52–58

    Article  PubMed  Google Scholar 

  • Seidler-Dobrin RD, Stelmach GE (1998) Persistence in visual feedback control by the elderly. Exp Brain Res 119:467–474

    Article  CAS  PubMed  Google Scholar 

  • Serrien DJ (2008) The neural dynamics of timed motor tasks: evidence from a synchronization-continuation paradigm. Eur J Neurosci 27:1553–1560

    Article  PubMed  Google Scholar 

  • Serrien DJ, Brown P (2004) Changes in functional coupling patterns during bimanual task performance. NeuroReport 15:1387–1390

    Article  PubMed  Google Scholar 

  • Serrien DJ, Swinnen SP, Stelmach GE (2000) Age-related deterioration of coordinated interlimb behavior. J Gerontol 55:295–303

    Article  Google Scholar 

  • Serrien DJ, Nirkko AC, Lovblad KO, Wiesendanger M (2001) Damage to the parietal lobe impairs bimanual coordination. NeuroReport 12:2721–2724

    Article  CAS  PubMed  Google Scholar 

  • Serrien DJ, Cassidy MJ, Brown P (2003) The importance of the dominant hemisphere in the organization of bimanual movements. Hum Brain Mapp 18:296–305

    Article  PubMed  Google Scholar 

  • Shaffer SW, Harrison AL (2007) Aging of the somatosensory system: a translational perspective. Phys Ther 87:193–207

    Article  PubMed  Google Scholar 

  • Sommervoll Y, Ettema G, Vereijken B (2011) Effects of age, task, and frequency on variability of finger tapping. Percept Mot Skills 113:647–661

    Article  PubMed  Google Scholar 

  • Steriade M, Llinas RR (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68:649–742

    CAS  PubMed  Google Scholar 

  • Summers JJ, Lewis J, Fujiyama H (2010) Aging effects on event and emergent timing in bimanual coordination. Hum Mov Sci 29:820–830

    Article  PubMed  Google Scholar 

  • Swinnen SP, Wenderoth N (2004) Two hands, one brain: cognitive neuroscience of bimanual skill. Trends Cogn Sci 8:18–25

    Article  PubMed  Google Scholar 

  • Swinnen SP, Verschueren SMP, Bogaerts H, Dounskaia N, Lee TD, Stelmach GE, Serrien DJ (1998) Age-related deficits in motor learning and differences in feedback processing during the production of a bimanual coordination pattern. Cogn Neuropsychol 15:439–466

    Article  Google Scholar 

  • ter Horst AC, Cole J, van Lier R, Steenbergen B (2012) The effect of chronic deafferentation on mental imagery: a case study. PLoS ONE 7:e42742

    Article  PubMed  Google Scholar 

  • van Hedel HJ, Dietz V (2004) The influence of age on learning a locomotor task. Clin Neurophysiol 115:2134–2143

    Article  PubMed  Google Scholar 

  • van Wijk BC, Litvak V, Friston KJ, Daffertshofer A (2013) Nonlinear coupling between occipital and motor cortex during motor imagery: a dynamic causal modeling study. NeuroImage 71:104–113

    Article  PubMed  Google Scholar 

  • Wai YY, Wang JJ, Weng YH et al (2012) Cortical involvement in a gait-related imagery task: comparison between Parkinson’s disease and normal aging. Parkinsonism Relat Disord 18:537–542

    Article  PubMed  Google Scholar 

  • Wenderoth N, Debaere F, Sunaert S, Swinnen SP (2005) The role of anterior cingulate cortex and precuneus in the coordination of motor behaviour. Eur J Neurosci 22:235–246

    Article  PubMed  Google Scholar 

  • Wishart LR, Lee TD, Murdoch JE, Hodges NJ (2000) Effects of aging on automatic and effortful processes in bimanual coordination. J Gerontol 55:85–94

    Article  Google Scholar 

  • Wishart LR, Lee TD, Cunningham SJ, Murdoch JE (2002) Age-related differences and the role of augmented visual feedback in learning a bimanual coordination pattern. Acta Psychol 110:247–263

    Article  Google Scholar 

  • Wright ML, Adamo DE, Brown SH (2011) Age-related declines in the detection of passive wrist movement. Neurosci Lett 500:108–112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Rhône-Alpes Region to ES, CL, MPD and JB (Research Cluster Fund No. 08 013981 01) and from the Swiss National Science Foundation to LS (#320030_143348). Cartool software (http://sites.google.com/site/fbmlab/cartool) has been programmed by Denis Brunet, from the Functional Brain Mapping Laboratory, Geneva, Switzerland, and supported by the Center for Biomedical Imaging (CIBM) of Geneva and Lausanne. Recordings were performed in the Laboratory for Experimental Research on Behavior (www.unil.ch/lerb) at the University of Lausanne, Switzerland, and at the Faculty of Psychology and Educational Sciences at the University of Geneva, Switzerland (www.unige.ch/fapse). The authors wish to thank Fosco Bernarsconi for his assistance with the analyses and the volunteers for their participation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Sallard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sallard, E., Spierer, L., Ludwig, C. et al. Age-related changes in the bimanual advantage and in brain oscillatory activity during tapping movements suggest a decline in processing sensory reafference. Exp Brain Res 232, 469–479 (2014). https://doi.org/10.1007/s00221-013-3754-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3754-3

Keywords

Navigation