Skip to main content
Log in

Dissociation of brain areas associated with force production and stabilization during manipulation of unstable objects

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Multifinger dexterous manipulation of unstable or deformable objects requires control of both direction and magnitude of fingertip force vectors. Our aim was to study the neuroanatomical correlates of these two distinct control functions. Brain activity was measured using functional magnetic resonance imaging while 16 male subjects (age: 26–42, M = 32, SD ± 4 years) compressed four springs representing a 2 × 2 factorial design with two levels of force and instability requirements. Significant activations associated with higher instability were located bilaterally in the precentral gyri, the postcentral gyrus, and the cerebellum. In the main effect for high force, activity was found in areas located in the primary motor regions contralateral to the active hand and bilaterally in the cerebellum. An overlap in activation between the two main effects was found bilaterally in the cerebellum (lobule VI). This study not only confirms a recently described bilateral fronto-parieto-cerebellar network for manipulation of increasingly unstable objects, but critically extends our understanding by describing its differentiated modulation with both force magnitude and instability requirements. Our results, therefore, expose a previously unrecognized and context-sensitive system of brain regions that enable dexterous manipulation for different force magnitude and instability requirements of the task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashburner J, Friston K (1997) Multimodal image coregistration and partitioning—a unified framework. Neuroimage 6(3):209–217

    Article  PubMed  CAS  Google Scholar 

  • Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (1999a) A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci 11(9):3276–3286

    Article  PubMed  CAS  Google Scholar 

  • Binkofski F, Buccino G, Stephan KM, Rizzolatti G, Seitz RJ, Freund HJ (1999b) A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128(1–2):210–213

    Article  PubMed  CAS  Google Scholar 

  • Bursztyn LL, Ganesh G, Imamizu H, Kawato M, Flanagan JR (2006) Neural correlates of internal-model loading. Curr Biol 16(24):2440–2445

    Article  PubMed  CAS  Google Scholar 

  • Dafotakis M, Sparing R, Eickhoff SB, Fink GR, Nowak DA (2008) On the role of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force. Brain Res 1228:73–80

    Article  PubMed  CAS  Google Scholar 

  • Duvernoy HM (1999) The human brain: surface, blood supply and three-dimensional sectional anatomy. Springer, Wien

    Google Scholar 

  • Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H (2000) Cortical activity in precision- versus power-grip tasks: an fMRI study. J Neurophysiol 83(1):528–536

    PubMed  CAS  Google Scholar 

  • Ehrsson HH, Fagergren E, Forssberg H (2001) Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. J Neurophysiol 85(6):2613–2623

    PubMed  CAS  Google Scholar 

  • Ehrsson HH, Kuhtz-Buschbeck JP, Forssberg H (2002) Brain regions controlling nonsynergistic versus synergistic movement of the digits: a functional magnetic resonance imaging study. J Neurosci 22(12):5074–5080

    PubMed  CAS  Google Scholar 

  • Ehrsson HH, Fagergren A, Johansson RS, Forssberg H (2003) Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. J Neurophysiol 90(5):2978–2986

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335

    Article  PubMed  Google Scholar 

  • Flanagan JR, Wing AM (1997) The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17(4):1519–1528

    PubMed  CAS  Google Scholar 

  • Flanagan JR, Bowman MC, Johansson RS (2006) Control strategies in object manipulation tasks. Curr Opin Neurobiol 16(6):650–659

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RSJ (1995) Spatial registration and normalization of images. Hum Brain Mapp 2:165–189

    Article  Google Scholar 

  • Gallea C, de Graaf JB, Bonnard M, Pailhous J (2005) High level of dexterity: differential contributions of frontal and parietal areas. Neuroreport 16(12):1271–1274

    Article  PubMed  Google Scholar 

  • Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878

    Article  PubMed  Google Scholar 

  • Jenmalm P, Schmitz C, Forssberg H, Ehrsson HH (2006) Lighter or heavier than predicted: neural correlates of corrective mechanisms during erroneously programmed lifts. J Neurosci 26(35):9015–9021

    Article  PubMed  CAS  Google Scholar 

  • Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10(5):345–359

    Article  PubMed  CAS  Google Scholar 

  • Johansson RS, Westling G (1988) Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Exp Brain Res 71(1):59–71

    PubMed  CAS  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6):718–727

    Article  PubMed  CAS  Google Scholar 

  • Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T (2003) Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res 142:171–188

    Article  PubMed  Google Scholar 

  • Kuhtz-Buschbeck JP, Ehrsson HH, Forssberg H (2001) Human brain activity in the control of fine static precision grip forces: an fMRI study. Eur J Neurosci 14(2):382–390

    Article  PubMed  CAS  Google Scholar 

  • Kuhtz-Buschbeck JP, Gilster R, Wolff S, Ulmer S, Siebner H, Jansen O (2008) Brain activity is similar during precision and power gripping with light force: an fMRI study. Neuroimage 40(4):1469–1481

    Article  PubMed  CAS  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89(12):5675–5679

    Article  PubMed  CAS  Google Scholar 

  • Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE (2006) Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage 31(4):1453–1474

    Article  PubMed  Google Scholar 

  • Milner TE, Franklin DW, Imamizu H, Kawato M (2006) Central representation of dynamics when manipulating handheld objects. J Neurophysiol 95(2):893–901

    Article  PubMed  Google Scholar 

  • Milner TE, Franklin DW, Imamizu H, Kawato M (2007) Central control of grasp: manipulation of objects with complex and simple dynamics. Neuroimage 36(2):388–395

    Article  PubMed  Google Scholar 

  • Mosier KM, Lau C, Wang Y, Venkadesan M, Valero-Cuevas FJ (2011) Controlling instabilities in manipulation requires specific cortical-striatal-cerebellar networks. J Neurophysiol 105(3):1295–1305

    Article  PubMed  Google Scholar 

  • Nichols T, Brett M, Andersson J, Wager T, Poline JB (2005) Valid conjunction inference with the minimum statistic. Neuroimage 25(3):653–660

    Article  PubMed  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89(13):5951–5955

    Article  PubMed  CAS  Google Scholar 

  • Ohki Y, Edin BB, Johansson RS (2002) Predictions specify reactive control of individual digits in manipulation. J Neurosci 22(2):600–610

    PubMed  CAS  Google Scholar 

  • Olivier E, Davare M, Andres M, Fadiga L (2007) Precision grasping in humans: from motor control to cognition. Curr Opin Neurobiol 17(6):644–648

    Article  PubMed  CAS  Google Scholar 

  • Talati A, Valero-Cuevas FJ, Hirsch J (2005) Visual and tactile guidance of dexterous manipulation tasks: an fMRI study. Percept Mot Skills 101(1):317–334

    Article  PubMed  Google Scholar 

  • Tanaka Y, Fujimura N, Tsuji T, Maruishi M, Muranaka H, Kasai T (2009) Functional interactions between the cerebellum and the premotor cortex for error correction during the slow rate force production task: an fMRI study. Exp Brain Res 193(1):143–150

    Article  PubMed  Google Scholar 

  • Valero-Cuevas FJ, Smaby N, Venkadesan M, Peterson M, Wright T (2003) The strength-dexterity test as a measure of dynamic pinch performance. J Biomech 36(2):265–270

    Article  PubMed  Google Scholar 

  • Vollmer B, Holmstrom L, Forsman L, Krumlinde-Sundholm L, Valero-Cuevas FJ, Forssberg H, Ullen F (2010) Evidence of validity in a new method for measurement of dexterity in children and adolescents. Dev Med Child Neurol 52(10):948–954

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish Research Council (5925), Swedish Foundation for Strategic Research, VINNOVA, Foundation Frimurare Barnhuset, Strategic Neuroscience Program at Karolinska Institutet and Knut and Alice Wallenberg, Foundation Stiftelsen Olle Engkvist Byggmästare. BV was funded by a Marie Curie Intra-European Fellowship within the EU FP6 Framework Programme. This work was supported in part by grants (to FVC) NSF 0237258, and NIH HD048566 and AR050520. The authors are thankful to Peter Fransson, Ph.D., for his comments on the initial design of the fMRI paradigm, and to Kristine Mosier, DMD, Ph.D., for her insightful comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Holmström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmström, L., de Manzano, Ö., Vollmer, B. et al. Dissociation of brain areas associated with force production and stabilization during manipulation of unstable objects. Exp Brain Res 215, 359–367 (2011). https://doi.org/10.1007/s00221-011-2903-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2903-9

Keywords

Navigation