Skip to main content

Advertisement

Log in

Manipulation of a fragile object by elderly individuals

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We investigated strategies of healthy elderly participants (74–84 years old) during prehension and transport of an object with varying degrees of fragility. Fragility was specified as the maximal normal force that the object could withstand without collapsing. Specifically, kinetic and kinematic variables as well as and force covariation indices were quantified and compared to those shown by young healthy persons (19–28 years old). We tested three hypotheses related to age-related changes in two safety margins (slip safety margin and crush safety margin) and indices of force covariation. Compared to young controls, elderly individuals exhibited a decrease in object acceleration and an increase in movement time, an increase in grip force production, a decrease in the correlation between grip and load forces, an overall decrease in indices of multi-digit synergies, and lower safety margin indices computed with respect to both dropping and crushing the object. Elderly participants preferred to be at a relatively lower risk of crushing the object even if this led to a higher risk of dropping it. Both groups showed an increase in the index of synergy stabilizing total normal force produced by the four fingers with increased fragility of the object. Age-related changes are viewed as a direct result of physiological changes due to aging, not adaptation to object fragility. Such changes in overall characteristics of prehension likely reflect diminished synergic control by the central nervous system of finger forces with aging. The findings corroborate an earlier hypothesis on an age-related shift from synergic to element-based control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arbib MA, Iberall T, Lyons D (1985) Coordinated control programs for movements of the hand. Exp Brain Res Suppl 10:111–129

    Google Scholar 

  • Booth FW, Weeden SH, Tseng BS (1994) Effect of aging on human skeletal muscle and motor function. Med Sci Sport Exerc 26:556–560

    CAS  Google Scholar 

  • Brooks SV, Faulkner JA (1994) Skeletal muscle weakness in old age: underlying mechanisms. Med Sci Sport Exerc 26:432–439

    CAS  Google Scholar 

  • Burstedt MK, Flanagan JR, Johansson RS (1999) Control of grasp stability in humans under different frictional conditions during multidigit manipulation. J Neurophysiol 82:2393–2405

    PubMed  CAS  Google Scholar 

  • Cole KJ (1991) Grasp force control in older adults. J Mot Behav 23:251–258

    Article  PubMed  CAS  Google Scholar 

  • Cole KJ, Beck CL (1994) The stability of precision grip force in older adults. J Mot Behav 26:171–177

    Article  PubMed  CAS  Google Scholar 

  • Cole KJ, Rotella DL, Harper JG (1999) Mechanisms for age-related changes of fingertip forces during precision gripping and lifting in adults. J Neurosci 19:3238–3247

    PubMed  CAS  Google Scholar 

  • Comaish S, Bottoms E (1971) The skin and friction: deviations from Amonton’s law and the effects of hydration and lubrication. Br J Dermatol 8:37–43

    Article  Google Scholar 

  • Cooke JD, Brown SH, Cunningham DA (1989) Kinematics of arm movements in elderly humans. Neurobiol Aging 10:159–165

    Article  PubMed  CAS  Google Scholar 

  • Dinse HR (2006) Cortical reorganization in the aging brain. Prog Brain Res 157:57–80

    Article  PubMed  Google Scholar 

  • Doherty TJ, Vandervoort AA, Brown WF (1993) Effects of aging on the motor unit: a brief review. Can J Appl Physiol 18:331–358

    Article  PubMed  CAS  Google Scholar 

  • Eisen A, Entezari-Taher M, Stewart H (1996) Cortical projections to spinal motoneurons: changes with aging and amyotrophic lateral sclerosis. Neurology 46:1396–1404

    PubMed  CAS  Google Scholar 

  • Erim Z, Beg FM, Burke DT, De Luca CJ (1999) Effects of aging on motor-unit control properties. J Neurophysiol 82:2081–2091

    PubMed  CAS  Google Scholar 

  • Flanagan JR, Tresilian J (1994) Grip-load force coupling: a general control strategy for transporting objects. J Exp Psych Hum Percept Perf 20:944–957

    Article  CAS  Google Scholar 

  • Flanagan JR, Wing AM (1993) Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res 95:131–143

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Wing AM (1995) The stability of precision grip forces during cyclic arm movements with a hand-held load. Exp Brain Res 105:455–464

    PubMed  CAS  Google Scholar 

  • Fradet L, Lee G, Dounskaia N (2008) Origins of submovements in movements of elderly adults. J Neuroeng Rehabil 5:28

    Article  PubMed  Google Scholar 

  • Francis KL, Spirduso WW (2000) Age differences in the expression of manual asymmetry. Exp Aging Res 26:169–180

    Article  PubMed  CAS  Google Scholar 

  • Gelfand IM, Latash ML (1998) On the problem of adequate language in motor control. Mot Control 2:306–313

    CAS  Google Scholar 

  • Gilles MA, Wing AM (2003) Age-related changes in grip force and dynamics of hand movement. J Mot Behav 35:79–85

    Article  PubMed  Google Scholar 

  • Gorniak SL, Zatsiorsky VM, Latash ML (2007a) Hierarchies of synergies: an example of two-hand, multifinger tasks. Exp Brain Res 179:167–180

    Article  PubMed  Google Scholar 

  • Gorniak SL, Zatsiorsky VM, Latash ML (2007b) Emerging and disappearing synergies in a hierarchically controlled system. Exp Brain Res 183:259–270

    Article  PubMed  Google Scholar 

  • Gorniak SL, Zatsiorsky VM, Latash ML (2009a) Hierarchical control of prehension. I. Biomechanics. Exp Brain Res 193:615–631

    Article  PubMed  Google Scholar 

  • Gorniak SL, Zatsiorsky VM, Latash ML (2009b) Hierarchical control of prehension. II. Multi-digit synergies. Exp Brain Res 194:1–15

    Article  PubMed  Google Scholar 

  • Gorniak SL, Zatsiorsky VM, Latash ML (2010) Manipulation of a fragile object. Exp Brain Res 202:413–430

    Article  PubMed  Google Scholar 

  • Grabiner MD, Enoka RM (1995) Changes in movement capabilities with aging. Exerc Sport Sci Rev 23:65–104

    Article  PubMed  CAS  Google Scholar 

  • Hamill J, Selbie WS (2004) Three-dimensional kinematics. In: Robertson DGE et al (eds) Research methods in biomechanics. Human Kinetics, Champaign, pp 35–52

    Google Scholar 

  • Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56:550–564

    Article  PubMed  CAS  Google Scholar 

  • Kang N, Shinohara M, Zatsiorsky VM, Latash ML (2004) Learning multi-finger synergies: an uncontrolled manifold analysis. Exp Brain Res 157:336–350

    Article  PubMed  Google Scholar 

  • Kapur S, Friedman J, Zatsiorsky VM, Latash ML (2010a) Finger interaction in a three-dimensional pressing task. Exp Brain Res 203:101–118

    Article  PubMed  Google Scholar 

  • Kapur S, Zatsiorsky VM, Latash ML (2010b) Age-related changes in the control of finger force vectors. J Appl Physiol 109:1827–1841

    Article  PubMed  Google Scholar 

  • Kinoshita H, Francis PR (1996) A comparison of prehension force control in young and elderly individuals. Eur J Appl Physiol 74:450–460

    Article  CAS  Google Scholar 

  • Latash ML, Li S, Danion F, Zatsiorsky VM (2002a) Central mechanisms of finger interaction during one- and two-hand force production at distal and proximal phalanges. Brain Res 924:198–208

    Article  PubMed  CAS  Google Scholar 

  • Latash ML, Scholz JP, Schöner G (2002b) Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev 30:26–31

    Article  PubMed  Google Scholar 

  • Latash ML, Scholz JP, Schöner G (2007) Toward a new theory of motor synergies. Mot Control 11:276–308

    Google Scholar 

  • Levinson DJ (1978) Seasons of a man’s life. Knopf, New York

    Google Scholar 

  • Lindberg P, Ody C, Feydy A, Maier MA (2009) Precision in isometric precision grip force is reduced in middle-aged adults. Exp Brain Res 193:213–224

    Article  PubMed  Google Scholar 

  • Mackenzie CL, Iberall T (1994) The grasping hand. North Holland, Amsterdam

    Google Scholar 

  • Olafsdottir H, Yoshida N, Zatsiorsky VM, Latash ML (2007a) Elderly show decreased adjustments of motor synergies in preparation to action. Clin Biomech 22:44–51

    Article  Google Scholar 

  • Olafsdottir H, Zhang W, Zatsiorsky VM, Latash ML (2007b) Age-related changes in multi-finger synergies in accurate moment of force production tasks. J Appl Physiol 102:1490–1501

    Article  PubMed  Google Scholar 

  • Olafsdottir HB, Kim SW, Zatsiorsky VM, Latash ML (2008) Anticipator synergy adjustments in preparation to self-triggered perturbations in elderly individuals. J Appl Biomech 24:175–179

    PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Park J, Sun Y, Zatsiorsky VM, Latash ML (2011) Age-related changes in optimality and motor variability: an example of multi-finger redundant tasks. Exp Brain Res (in press)

  • Pataky TC, Latash ML, Zatsiorsky VM (2004) Prehension synergies during nonvertical grasping, I: experimental observations. Biol Cybern 91:148–158

    PubMed  Google Scholar 

  • Rodgers MA, Evans WJ (1993) Changes in skeletal muscle with aging: effects of exercise training. Exerc Sport Sci Rev 21:65–102

    Google Scholar 

  • Savescu AV, Latash ML, Zatsiorsky VM (2008) A technique to determine friction at the fingertips. J Appl Biomech 24:43–50

    PubMed  Google Scholar 

  • Schieber MH (2001) Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol 86:2125–2143

    PubMed  CAS  Google Scholar 

  • Schieber MH, Santello M (2004) Hand function: peripheral and central constraints on performance. J Appl Physiol 96:2293–2300

    Article  PubMed  Google Scholar 

  • Seidler-Dobrin RD, He J, Stelmach GE (1998) Coactivation to reduce variability in the elderly. Mot Control 2:314–330

    CAS  Google Scholar 

  • Shim JK, Lay B, Zatsiorsky VM, Latash ML (2004) Age-related changes in finger coordination in static prehension tasks. J Appl Physiol 97:213–224

    Article  PubMed  Google Scholar 

  • Shim JK, Latash ML, Zatsiorsky VM (2005) Prehension synergies in three dimensions. J Neurophysiol 93:766–776

    Article  PubMed  Google Scholar 

  • Shinohara M, Latash ML, Zatsiorsky VM (2003a) Age effects on force produced by intrinsic and extrinsic hand muscles and finger interaction during MVC tasks. J Appl Physiol 95:1361–1369

    PubMed  Google Scholar 

  • Shinohara M, Li S, Kang N, Zatsiorsky VM, Latash ML (2003b) Effects of age and gender on finger coordination in MVC and sub-maximal force-matching tasks. J Appl Physiol 94:259–270

    PubMed  Google Scholar 

  • Shinohara M, Scholz JP, Zatsiorsky VM, Latash ML (2004) Finger interaction during accurate multi-finger force production tasks in young and elderly persons. Exp Brain Res 156:282–292

    Article  PubMed  Google Scholar 

  • Sun Y, Zatsiorsky VM, Latash ML (2011) Prehension of half-full and half-empty glasses: time and history effects on multi-digit coordination. Exp Brain Res 209:571–585

    Article  PubMed  Google Scholar 

  • Teulings HL, Contreras-Vidal JL, Stelmach GE, Adler CH (1997) Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp Neurol 146:159–170

    Article  PubMed  CAS  Google Scholar 

  • SKM V, Zatsiorsky VM, Latash ML (2010) Variance components in discrete force production tasks. Exp Brain Res 205:335–349

    Article  Google Scholar 

  • Verillo RT (1979) Change in vibrotactile thresholds as a function of age. Sens Process 3:49–59

    Google Scholar 

  • Walker N, Philbin DA, Fisk AD (1997) Age-related differences in movement control: adjusting submovement structure to optimize performance. J Gerontol B Psychol Sci Soc Sci 52:P40–P52

    PubMed  CAS  Google Scholar 

  • Welford AT (1984) Between bodily changes and performance: some possible reasons for slowing with age. Exp Aging Res 10:73–88

    PubMed  CAS  Google Scholar 

  • Wing AM, Flanagan JR, Richardson J (1997) Anticipatory postural adjustments in stance and grip. Exp Brain Res 116:122–130

    Article  PubMed  CAS  Google Scholar 

  • Winges SA, Eonta SE, Soechting JF, Flanders M (2009) Effects of object compliance on three-digit grasping. J Neurophysiol 101:2447–2458

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM (1998) Kinematics of human motion. Human Kinetics, Champaign

    Google Scholar 

  • Zatsiorsky VM, Latash ML (2004) Prehension synergies. Exerc Sport Sci Rev 32:75–80

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM, Latash ML (2008) Prehension synergies: an overview. J Mot Behav 40:446–476

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM, Li ZM, Latash ML (1998) Coordinated force production in multi-finger tasks: finger interaction and neural network modeling. Biol Cybern 79:139–150

    Article  PubMed  CAS  Google Scholar 

  • Zatsiorsky VM, Li ZM, Latash ML (2000) Enslaving effects in multi-finger force production. Exp Brain Res 131:187–195

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Olafsdottir HB, Zatsiorsky VM, Latash ML (2009) Mechanical analysis and hierarchies of multidigit synergies during accurate object rotation. Mot Control 13:251–279

    Google Scholar 

Download references

Acknowledgments

The study was supported in part by NIH grants AG-018751, NS-035032, and AR-048563. We would like to thank Jason Friedman and Jim Metzler for their assistance in data collection, Shweta Kapur and Varadhan SKM for their assistance in subject recruitment and screening, and Matthew Kuklis for help with editing this manuscript. Additionally, we would like to thank PCB Piezotronics (Depew, NY, USA) for donating the accelerometer used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Latash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorniak, S.L., Zatsiorsky, V.M. & Latash, M.L. Manipulation of a fragile object by elderly individuals. Exp Brain Res 212, 505–516 (2011). https://doi.org/10.1007/s00221-011-2755-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2755-3

Keywords

Navigation