Skip to main content

Advertisement

Log in

Virtual labyrinth model of vestibular afferent excitation via implanted electrodes: validation and application to design of a multichannel vestibular prosthesis

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

An Erratum to this article was published on 03 April 2011

Abstract

To facilitate design of a multichannel vestibular prosthesis that can restore sensation to individuals with bilateral loss of vestibular hair cell function, we created a virtual labyrinth model. Model geometry was generated through 3-dimensional (3D) reconstruction of microMRI and microCT scans of normal chinchillas (Chinchilla lanigera) acquired with 30–48 μm and 12 μm voxels, respectively. Virtual electrodes were positioned based on anatomic landmarks, and the extracellular potential field during a current pulse was computed using finite element methods. Potential fields then served as inputs to stochastic, nonlinear dynamic models for each of 2,415 vestibular afferent axons with spiking dynamics based on a modified Smith and Goldberg model incorporating parameters that varied with fiber location in the neuroepithelium. Action potential propagation was implemented by a well validated model of myelinated fibers. We tested the model by comparing predicted and actual 3D angular vestibulo-ocular reflex (aVOR) axes of eye rotation elicited by prosthetic stimuli. Actual responses were measured using 3D video-oculography. The model was individualized for each animal by placing virtual electrodes based on microCT localization of real electrodes. 3D eye rotation axes were predicted from the relative proportion of model axons excited within each of the three ampullary nerves. Multiple features observed empirically were observed as emergent properties of the model, including effects of active and return electrode position, stimulus amplitude and pulse waveform shape on target fiber recruitment and stimulation selectivity. The modeling procedure is partially automated and can be readily adapted to other species, including humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baarsma EA, Collewijn H (1975) Eye movements due to linear accelerations in the rabbit. J Physiol 245(1):227–247

    PubMed  CAS  Google Scholar 

  • Baird RA, Desmadryl G, Fernández C, Goldberg JM (1988) The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. J Neurophysiol 60(1):182–203

    PubMed  CAS  Google Scholar 

  • Briaire JJ, Frijns JH (2000) Field patterns in a 3D tapered spiral model of the electrically stimulated cochlea. Hear Res 148(1–2):18–30

    Article  PubMed  CAS  Google Scholar 

  • Chiang B, Fridman GY, Della Santina CC (2010) Design and performance of a multichannel vestibular prosthesis that restores semicircular canal sensation in macaques. IEEE Trans Neural Systems Rehab Eng (in press)

  • Cohen B, Suzuki JI (1963) Eye movements induced by ampullary nerve stimulation. Am J Physiol 204:347–351

    PubMed  CAS  Google Scholar 

  • Cohen B, Suzuki J, Bender MB (1964) Eye movements from semicircular canal nerve stimulation in cat. Ann Otol Rhinol Laryngol 73:153–169

    PubMed  CAS  Google Scholar 

  • Cremer PD, Minor LB, Carey JP, Della Santina CC (2000) Eye movements in patients with superior canal dehiscence syndrome align with the abnormal canal. Neurology 55(12):1833–1841

    PubMed  CAS  Google Scholar 

  • Curthoys IS (1987) Eye movements produced by utricular and saccular stimulation. Aviat Space Environ Med 58(9):192–197

    Google Scholar 

  • Dai C, Fridman GY, Chiang B, Davidovics NS, Melvin TA, Cullen KE, Della Santina CC (2011) Cross-axis adaptation improves 3D vestibulo-ocular reflex alignment during chronic stimulation via a head-mounted multichannel vestibular prosthesis, Exp Brain Res (in press this issue)

  • Davidovics NS, Fridman GY, Chiang B, Della Santina CC (2010) Effects of biphasic current pulse frequency, amplitude, duration and interphase gap on eye movement responses to prosthetic electrical stimulation of the vestibular nerve. IEEE Trans Neural Systems Rehab Eng (in press)

  • Della Santina CC, Migliaccio AA, Patel AH (2005a) Electrical stimulation to restore vestibular function development of a 3-D vestibular prosthesis. Conf Proc IEEE Eng Med Biol Soc 7:7380–7385

    PubMed  Google Scholar 

  • Della Santina CC, Migliaccio AA, Park HJ, Anderson IW, Jiradejvong P, Minor LB and Carey JP (2005b) 3D Vestibuloocular reflex, afferent responses and crista histology in chinchillas after unilateral intratympanic gentamicin. Abstract 813, ARO midwinter meeting 2005

  • Della Santina CC, Potyagaylo V, Migliaccio AA, Minor LB, Carey JP (2005c) Orientation of human semicircular canals measured by three-dimensional multiplanar CT reconstruction. JARO 6(3):191–206

    Article  PubMed  Google Scholar 

  • Della Santina CC, Migliaccio AA, Patel AH (2007) A multichannel semicircular canal neural prosthesis using electrical stimulation to restore 3-D vestibular sensation. IEEE Trans Biomed Eng 54:1016–1030

    Article  PubMed  Google Scholar 

  • Della Santina CC, Migliaccio AA, Hayden R, Melvin TA, Fridman GY, Chiang B, Davidovics NS, Dai C, Carey JP, Minor LB, Anderson ICW, Park H, Lyford-Pike S, Tang S (2010) Current and Future Management of Bilateral Loss of Vestibular Sensation – An update on the Johns Hopkins Multichannel Vestibular Prosthesis Project. Cochlear Implants Internat 11(s2):2–11

  • Dow Corning (2005) SILASTIC® MDX4-4210 biomedical grade elastomer data sheet. Dow corning corporation

  • Fernández C, Baird RA, Goldberg JM (1988) The vestibular nerve of the chinchilla. I. Peripheral innervation patterns in the horizontal and superior semicircular canals. J Neurophysiol 60(1):167–181

    PubMed  Google Scholar 

  • Fernández C, Goldberg JM, Baird RA (1990) The vestibular nerve of the chinchilla III Peripheral innervation patterns in the utricular macula. J Neurophysiol 63(4):767–780

    PubMed  Google Scholar 

  • Finley CC, Wilson BS, White MW (1990) Models of neural responsiveness to electrical stimulation. In: Miller JM, Spelman FA (eds) Cochlear implants: models of the electrically stimulated ear. Springer-Verlag, New York, pp 55–93

    Google Scholar 

  • Fluur E, Mellström A (1970a) Utricular stimulation and oculomotor reactions. Laryngoscope 80:1701–1712

    Article  PubMed  CAS  Google Scholar 

  • Fluur E, Mellström A (1970b) Saccular stimulation and oculomotor reactions. Laryngoscope 80:1713–1721

    Article  PubMed  CAS  Google Scholar 

  • Fluur E, Mellström A (1971) The otolith organs and their influence on oculomotor movements. Exp Neurol 30:139–147

    Article  PubMed  CAS  Google Scholar 

  • Fridman GY, Davidovics NS, Dai C, Della Santina CC (2010) Vestibulo-ocular reflex responses to a multichannel vestibular prosthesis incorporating a 3D coordinate transformation for correction of misalignment. JARO 11(3):367–381

    Article  PubMed  Google Scholar 

  • Frijns JH, ten Kate JH (1994) (1994) A model of myelinated nerve fibres for electrical prosthesis design. Med Biol Eng Comput 32(4):391–398

    Article  PubMed  CAS  Google Scholar 

  • Frijns JH, Mooij J, ten Kate JH (1994) A quantitative approach to modeling mammalian myelinated nerve fibers for electrical prosthesis design. IEEE Trans Biomed Eng 41(6):556–566

    Article  PubMed  CAS  Google Scholar 

  • Frijns JH, de Snoo SL, Schoonhoven R (1995) Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hearing Res 87(1–2):170–186

    Article  CAS  Google Scholar 

  • Geddes LA, Baker LE (1967) The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5(3):271–293

    Article  PubMed  CAS  Google Scholar 

  • Gillespie MB, Minor LB (1999) Prognosis in bilateral vestibular hypofunction. Laryngoscope 109:35–41

    Article  PubMed  CAS  Google Scholar 

  • Girzon G (1987) Investigation of current flow in the inner ear during electrical stimulation of intracochlear electrodes. PhD Thesis. Massachusetts Institute of Technology

  • Goldberg JM, Fernández C, Smith CE (1982) Responses of vestibular-nerve afferents in the squirrel monkey to externally applied galvanic currents. Brain Res 252(1):156–160

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JM, Smith CE, Fernández C (1984) Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol 51(6):1236–1256

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Desmadryl G, Baird RA, Fernández C (1990a) The vestibular nerve of the chinchilla. IV. Discharge properties of utricular afferents. J Neurophysiol 63(4):781–790

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Desmadryl G, Baird RA, Fernández C (1990b) The vestibular nerve of the chinchilla. V. Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. J Neurophysiol 63(4):791–804

    PubMed  CAS  Google Scholar 

  • Gong WS, Merfeld DM (2000) Prototype neural semicircular canal prosthesis using patterned electrical stimulation. Annals of Biomed Eng 28:572–581

    Article  CAS  Google Scholar 

  • Gong WS, Merfeld DM (2002) System design and performance of a unilateral horizontal semicircular canal prosthesis. IEEE Trans Biomed Eng 49:175–181

    Article  PubMed  Google Scholar 

  • Goto F, Meng H, Bai R, Sato H, Imagawa M, Sasaki M, Uchino Y (2003) Eye movements evoked by the selective stimulation of the utricular nerve in cats. Auris Nasus Larynx 30(4):341–348

    Article  PubMed  Google Scholar 

  • Goto F, Meng H, Bai R, Sato H, Imagawa M, Sasaki M, Uchino Y (2004) Eye movements evoked by selective saccular nerve stimulation in cats. Auris Nasus Larynx 31(3):220–225

    Article  PubMed  Google Scholar 

  • Grunbauer WM, Dieterich M, Brandt T (1998) Bilateral vestibular failure impairs visual motion perception even with the head still. Neuroreport 9(8):1807–1810

    Article  PubMed  CAS  Google Scholar 

  • Hanekom T (2001) Three-dimensional spiraling finite element model of the electrically stimulated cochlea. Ear Hear 22(4):300–315

    Article  PubMed  CAS  Google Scholar 

  • Hanekom T (2005) Modelling encapsulation tissue around cochlear implant electrodes. Med Biol Eng Comput 43(1):47–55

    Article  PubMed  CAS  Google Scholar 

  • Haueisen J, Ramon C, Czapski P, Eiselt M (1995) On the influence of volume currents and extended sources on neuromagnetic fields: a simulation study. Ann Biomed Eng 23(6):728–739

    Article  PubMed  CAS  Google Scholar 

  • Hayden R (2007) A model to guide electrode design for a multichannel vestibular prosthesis. Master of Science Thesis. Johns Hopkins University

  • Hirvonen TP, Minor LB, Hullar TE, Carey JP (2005) Effects of intratympanic gentamicin on vestibular afferents and hair cells in the chinchilla. J Neurophysiol 93(2):643–655

    Article  PubMed  Google Scholar 

  • Hullar TE, Williams CD (2006) Geometry of the semicircular canals of the chinchilla (Chinchilla laniger). Hear Res 213(1–2):17–24

    Article  PubMed  Google Scholar 

  • Ifediba MA, Rajguru SM, Hullar TE, Rabbitt RD (2007) The role of 3-canal biomechanics in angular motion transduction by the human vestibular labyrinth. Ann Biomed Eng 35(7):1247–1263

    Article  PubMed  Google Scholar 

  • Kosterich JD, Foster KR, Pollack SR (1983) Dielectric permittivity and electrical conductivity of fluid saturated bone. IEEE Trans Biomed Eng 30(2):81–86

    Article  PubMed  CAS  Google Scholar 

  • Lewis RF, Haburcakova C, Gong W, Makary C, Merfeld DM (2010) Vestibuloocular reflex adaptation investigated with chronic motion-modulated electrical stimulation of semicircular canal afferents. J Neurophysiol 103(2):1066–1079

    Article  PubMed  Google Scholar 

  • Lyford-Pike S, Vogelheim C, Chu E, Della Santina CC, Carey JP (2007) Gentamicin is primarily localized in vestibular Type I hair cells after intratympanic administration. JARO 8:497–508

    Article  PubMed  Google Scholar 

  • Lysakowski A, Goldberg JM (1997) A regional ultrastructural analysis of the cellular and synaptic architecture in the chinchilla cristae ampullares. J Comp Neurol 389(3):419–443

    Article  PubMed  CAS  Google Scholar 

  • Macherey O, van Wieringen A, Carlyon RP, Deeks JM, Wouters J (2006) Asymmetric pulses in cochlear implants: effects of pulse shape, polarity, and rate. JARO 7(3):253–266

    Article  PubMed  Google Scholar 

  • Malmivuo J, Plonsey R (1995) Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New York

    Google Scholar 

  • McIntyre CC, Richardson AG, Grill WM (2002) Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol 87(2):995–1006

    PubMed  Google Scholar 

  • Meng H, Angelaki DE (2006) Neural correlates of the dependence of compensatory eye movements during translation on target distance and eccentricity. J Neurophysiol 95(4):2530–2540

    Article  PubMed  Google Scholar 

  • Merfeld DM, Gong WS, Morrissey J, Saginaw M, Haburcakova C, Lewis RF (2006) Acclimation to chronic constant-rate peripheral stimulation provided by a vestibular prosthesis. IEEE Trans Biomed Eng 53(11):2362–2372

    Article  PubMed  Google Scholar 

  • Merfeld DM, Haburcakova C, Gong W, Lewis RF (2007) Chronic vestibulo-ocular reflexes evoked by a vestibular prosthesis. IEEE Trans Biomed Eng 54(6):1005–1015

    Article  PubMed  Google Scholar 

  • Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44(247):335–341

    Article  PubMed  CAS  Google Scholar 

  • Migliaccio AA, MacDougall HG, Minor LB, Della Santina CC (2005) Inexpensive system for real-time 3-dimensional video-oculography using a fluorescent marker array. J Neurosci Methods 143:141–150

    Article  PubMed  Google Scholar 

  • Migliaccio AA, Minor LB, Della Santina CC (2010) Adaptation of the vestibulo-ocular reflex for forward-eyed foveate vision. J Physiol 588(Pt 20):3855–3867

    Article  PubMed  CAS  Google Scholar 

  • Minor LB (1998) Gentamicin-induced bilateral vestibular hypofunction. JAMA 279:541–544

    Article  PubMed  CAS  Google Scholar 

  • Phillips JO, et al (2010) Discharge frequency versus recruitment coding for a unilateral vestibular implant, proceedings of the XXVI Bárány society congress, abstract A1-2, J Vestib Res 20:150

    Google Scholar 

  • Rabbitt RD, Breneman KD, King C, Yamauchi AM, Boyle R, Highstein SM (2009) Dynamic displacement of normal and detached semicircular canal cupula. JARO 10(4):497–509

    Article  PubMed  Google Scholar 

  • Rajguru SM, Rabbitt RD (2007) Afferent responses during experimentally induced semicircular canalithiasis. J Neurophysiol 97(3):2355–2363

    Article  PubMed  Google Scholar 

  • Rajguru SM, Ifediba MA, Rabbitt RD (2004) Three-dimensional biomechanical model of benign paroxysmal positional vertigo. Ann Biomed Eng 32(6):831–846

    Article  PubMed  Google Scholar 

  • Ranck JB, Bement SL (1965) The specific impedance of the dorsal columns of cat: an anisotropic medium. Exp Neurol 11:451–463

    Article  PubMed  Google Scholar 

  • Robblee L, Rose T (1990) Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation. In: Agnew WF, McCreery DB (eds) Neural prostheses: fundamental studies. Englewood Cliffs, NJ, Prentice-Hall, pp 26–66

    Google Scholar 

  • Rubinstein JT, Della Santina CC (2002) Development of a biophysical model for vestibular prosthesis research. J Vestib Res 12(2–3):69–76

    PubMed  Google Scholar 

  • Rubinstein JT, Miller CA, Mino H, Abbas PJ (2001) Analysis of monophasic and biphasic electrical stimulation of nerve. IEEE Trans. Biomed Eng 48:1065–1070

    Article  PubMed  CAS  Google Scholar 

  • Schwarz JR, Eikhof G (1987) Na currents and action potentials in rat myelinated nerve fibres at 20 and 37 degrees C. Pflugers Arch 409(6):569–577

    Article  PubMed  CAS  Google Scholar 

  • Smith CE, Goldberg JM (1986) A stochastic afterhyperpolarization model of repetitive activity in vestibular afferents. Biol Cybern 54(1):41–51

    Article  PubMed  CAS  Google Scholar 

  • Spelman FA, Clopton BM, Pfingst BE (1982) Tissue impedance and current flow in the implanted ear. Implications for the cochlear prosthesis. Ann Oto Rhin Laryn Supp 98:3–8

    CAS  Google Scholar 

  • Spelman FA, Pfingst BE, Clopton BM, Jolly CN, Rodenhiser KL (1995) Effects of electrical current configuration on potential fields in the electrically stimulated cochlea: field models and measurements. Ann Otol Rhinol Laryngol Suppl 166:131–136

    PubMed  CAS  Google Scholar 

  • Suesserman MF, Spelman FA (1993) Quantitative in vivo measurements of inner ear tissue resistivities: I. In vitro characterization. IEEE Trans Biomed Eng 40(10):1032–1047

    Article  PubMed  CAS  Google Scholar 

  • Suzuki JI, Cohen B (1964) Head, eye, body and limb movement from semicircular canal nerves. Exp Neurol 10:393–405

    Article  PubMed  CAS  Google Scholar 

  • Suzuki JI, Goto K, Tokumasu K, Cohen B (1969a) Implantation of electrodes near individual vestibular nerve branches in mammals. Ann Otol Rhin Laryng 78(4):815–826

    CAS  Google Scholar 

  • Suzuki JI, Tokumasu K, Goto K (1969b) Eye movements from single utricular nerve stimulation in the cat. Acta Otolaryngol 68(4):350–362

    Article  PubMed  CAS  Google Scholar 

  • Tasaki I (1964) A new measurement of action currents developed by single nodes of Ranvier. J Neurophysiol 27:1199–1206

    PubMed  CAS  Google Scholar 

  • Whiten DM (2003) Threshold predictions based on an electro-anatomical model of the cochlear implant. Master of Science Thesis. Massachusetts Institute of Technology

  • Whiten DM (2007) Electro-anatomical models of the cochlear implant. PhD dissertation. Massachusetts Institute of Technology

Download references

Acknowledgments

Supported by the United States National Institute on Deafness and Other Communication Disorders K08DC6216 (PI: CCDS), R01DC9255 (PI: CCDS) and R01DC2390 (Current PI: CCDS; Prior PI: Lloyd B. Minor) and by a Medtronic Student Fellowship (PI: RH). CDS, GYF and BC are inventors on pending and awarded patents relevant to prosthesis technology, and CDS holds an equity interest in Labyrinth Devices LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles C. Della Santina.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00221-011-2640-0

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 51 kb)

Supplementary material 2 (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayden, R., Sawyer, S., Frey, E. et al. Virtual labyrinth model of vestibular afferent excitation via implanted electrodes: validation and application to design of a multichannel vestibular prosthesis. Exp Brain Res 210, 623–640 (2011). https://doi.org/10.1007/s00221-011-2599-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2599-x

Keywords

Navigation