Skip to main content
Log in

Spatial maps for time and motion

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In this article, we review recent research studying the mechanisms for transforming coordinate systems to encode space, time and motion. A range of studies using functional imaging and psychophysical techniques reveals mechanisms in the human brain for encoding information in external rather than retinal coordinates. This reinforces the idea of a tight relationship between space and time, in the parietal cortex of primates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alhazen I (1083) Book of optics. In: Sabra AI (ed) The optics of Ibn al-Haytham. Warburg Institute, London, 1989

  • Ben Hamed S, Duhamel JR, Bremmer F, Graf W (2002) Visual receptive field modulation in the lateral intraparietal area during attentive fixation and free gaze. Cereb Cortex 12(3):234–245

    Article  CAS  PubMed  Google Scholar 

  • Binda P, Cicchini GM, Burr DC, Morrone MC (2009) Spatiotemporal distortions of visual perception at the time of saccades. J Neurosci 29(42):13147–13157

    Article  CAS  PubMed  Google Scholar 

  • Bueti D, Walsh V (2009) The parietal cortex and the representation of time, space, number and other magnitudes. Philos Trans R Soc Lond B Biol Sci 364(1525):1831–1840

    Article  PubMed  Google Scholar 

  • Bueti D, Bahrami B, Walsh V (2008) Sensory and association cortex in time perception. J Cogn Neurosci 20(6):1054–1062

    Article  PubMed  Google Scholar 

  • Burr DC, Morrone MC, Ross J (2001) Separate visual representations for perception and action revealed by saccadic eye movements. Curr Biol 11(10):798–802

    Article  CAS  PubMed  Google Scholar 

  • Burr D, Tozzi A, Morrone MC (2007) Neural mechanisms for timing visual events are spatially selective in real-world coordinates. Nat Neurosci 10(4):423–425

    CAS  PubMed  Google Scholar 

  • Cavanagh P, Hunt AR, Afraz A, Rolfs M (2010) Visual stability based on remapping of attention pointers. Trends Cogn Sci 14(4):147–153

    Article  PubMed  Google Scholar 

  • Cicchini GM, Morrone MC (2009) Shifts in spatial attention affect the perceived duration of events. J Vis 9(1): 9.1–13

    Google Scholar 

  • Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3(7):553–562

    Article  CAS  PubMed  Google Scholar 

  • Crespi SA, Biagi L, Burr DC, d’Avossa G, Tosetti M, Morrone MC (2009) Spatial attention modulates the spatiotopicity of human MT complex. Perception, 38, ECVP Abstract Supplement

  • d’Avossa G, Tosetti M, Crespi S, Biagi L, Burr DC, Morrone MC (2007) Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nat Neurosci 10(2):249–255

    Article  PubMed  Google Scholar 

  • Demeyer M, De Graef P, Wagemans J, Verfaillie K (2009) Transsaccadic identification of highly similar artificial shapes. J Vis 9(4): 28.1–14

    Google Scholar 

  • Demeyer M, De Graef P, Wagemans J, Verfaillie K (2010) Parametric integration of visual form across saccades. Vision Res 50(13):1225–1234

    Article  PubMed  Google Scholar 

  • Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vision Res 36(12):1827–1837

    Article  CAS  PubMed  Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255(5040):90–92

    Article  CAS  PubMed  Google Scholar 

  • Duhamel J, Bremmer F, BenHamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389:845–848

    Article  CAS  PubMed  Google Scholar 

  • Durand JB, Trotter Y, Celebrini S (2010) Privileged processing of the straight-ahead direction in primate area V1. Neuron 66(1):126–137

    Article  CAS  PubMed  Google Scholar 

  • Enns JT, Brehaut JC, Shore DI (1999) The duration of a brief event in the mind’s eye. J Gen Psychol 126(4):355–372

    Article  CAS  PubMed  Google Scholar 

  • Galletti C, Battaglini PP, Fattori P (1993) Parietal neurons encoding spatial locations in craniotopic coordinates. Exp Brain Res 96:221–229

    Article  CAS  PubMed  Google Scholar 

  • Gardner JL, Merriam EP, Movshon JA, Heeger DJ (2008) Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J Neurosci 28(15):3988–3999

    Article  CAS  PubMed  Google Scholar 

  • Giora E, Morgan MJ, Solomon JA (2006) Parallel processing is much harder for temporal duration than for spatial length. J Vision 6:1012

    Google Scholar 

  • Golomb JD, Chun MM, Mazer JA (2008) The native coordinate system of spatial attention is retinotopic. J Neurosci 28(42):10654–10662

    Article  CAS  PubMed  Google Scholar 

  • Goossens J, Dukelow SP, Menon RS, Vilis T, van den Berg AV (2006) Representation of head-centric flow in the human motion complex. J Neurosci 26(21):5616–5627

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb JP, Kusunoki M, Goldberg ME (1998) The representation of visual salience in monkey parietal cortex. Nature 391(6666):481–484

    Article  CAS  PubMed  Google Scholar 

  • Irwin DE, Yantis S, Jonides J (1983) Evidence against visual integration across saccadic eye movements. Percept Psychophys 34(1):49–57

    CAS  PubMed  Google Scholar 

  • Janssen P, Shadlen MN (2005) A representation of the hazard rate of elapsed time in macaque area LIP. Nat Neurosci 8(2):234–241

    Article  CAS  PubMed  Google Scholar 

  • Johnston A, Arnold DH, Nishida S (2006) Spatially localized distortions of event time. Curr Biol 16(5):472–479

    Article  CAS  PubMed  Google Scholar 

  • Jonides J, Irwin DE, Yantis S (1983) Failure to integrate information from successive fixations. Science 222(4620):188

    Article  CAS  PubMed  Google Scholar 

  • Kanai R, Paffen CL, Hogendoorn H, Verstraten FA (2006) Time dilation in dynamic visual display. J Vis 6(12):1421–1430

    PubMed  Google Scholar 

  • Kaneko S, Murakami I (2009) Perceived duration of visual motion increases with speed. J Vis 9(7):14

    Article  PubMed  Google Scholar 

  • Leon MI, Shadlen MN (2003) Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38(2):317–327

    Article  CAS  PubMed  Google Scholar 

  • Macknik SL, Martinez-Conde S (2004) Dichoptic visual masking reveals that early binocular neurons exhibit weak interocular suppression: implications for binocular vision and visual awareness. J Cogn Neurosci 16(6):1049–1059

    Article  PubMed  Google Scholar 

  • McKyton A, Zohary E (2007) Beyond retinotopic mapping: the spatial representation of objects in the human lateral occipital complex. Cereb Cortex 17(5):1164–1172

    Article  PubMed  Google Scholar 

  • Melcher D (2005) Spatiotopic transfer of visual-form adaptation across saccadic eye movements. Curr Biol 15(19):1745–1748

    Article  CAS  PubMed  Google Scholar 

  • Melcher D, Morrone MC (2003) Spatiotopic temporal integration of visual motion across saccadic eye movements. Nat Neurosci 6(8):877–881

    Article  CAS  PubMed  Google Scholar 

  • Morgan MJ (2003) The space between your ears: how the brain represents visual space. Weidenfeld & Nicolson, London

    Google Scholar 

  • Morrone MC, Ma-Wyatt A, Ross J (2005a) Seeing and ballistic pointing at perisaccadic targets. J Vis 5(9):741–754

    Article  PubMed  Google Scholar 

  • Morrone MC, Ross J, Burr D (2005b) Saccadic eye movements cause compression of time as well as space. Nat Neurosci 8(7):950–954

    CAS  PubMed  Google Scholar 

  • Ong WS, Bisley JW (2010) A study of peri-saccadic remapping in area MT. JoV, abstract (in press)

  • Ong WS, Hooshvar N, Zhang M, Bisley JW (2009) Psychophysical evidence for spatiotopic processing in area MT in a short-term memory for motion task. J Neurophysiol 102(4):2435–2440

    Article  PubMed  Google Scholar 

  • Pouget A, Deneve S, Duhamel JR (2002) A computational perspective on the neural basis of multisensory spatial representations. Nat Rev Neurosci 3(9):741–747

    Article  CAS  PubMed  Google Scholar 

  • Reeves A, Sperling G (1986) Attention gating in short-term visual memory. Psychol Rev 93(2):180–206

    Article  CAS  PubMed  Google Scholar 

  • Rose D, Summers J (1995) Duration illusions in a train of visual stimuli. Perception 24(10):1177–1187

    Article  CAS  PubMed  Google Scholar 

  • Sapir A, Hayes A, Henik A, Danziger S, Rafal R (2004) Parietal lobe lesions disrupt saccadic remapping of inhibitory location tagging. J Cogn Neurosci 16(4):503–509

    Article  PubMed  Google Scholar 

  • Sereno MI, Huang RS (2006) A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci 9(10):1337–1343

    Article  CAS  PubMed  Google Scholar 

  • Silver MA, Kastner S (2009) Topographic maps in human frontal and parietal cortex. Trends Cogn Sci 13(11):488–495

    Article  PubMed  Google Scholar 

  • Snyder LH, Grieve KL, Brotchie P, Andersen RA (1998) Separate body- and world-referenced representations of visual space in parietal cortex. Nature 394(6696):887–891

    Article  CAS  PubMed  Google Scholar 

  • Thompson P (1981) Velocity after-effects: the effects of adaptation to moving stimuli on the perception of subsequently seen moving stimuli. Vision Res 21(3):337–345

    Article  CAS  PubMed  Google Scholar 

  • Thompson P, Burr D (2009) Visual after effects. Curr Biol 19(1):R11–R14

    Article  CAS  PubMed  Google Scholar 

  • Treisman M (1963) Temporal discrimination and the indifference interval. Implications for a model of the “internal clock”. Psychol Monogr 77(13):1–31

    CAS  PubMed  Google Scholar 

  • Trotter Y, Celebrini S (1999) Gaze direction controls response gain in primary visual-cortex neurons. Nature 398(6724):239–242

    Article  CAS  PubMed  Google Scholar 

  • Tse P, Intriligator J, Rivest J, Cavanagh P (2004) Attention and the subjective expansion of time. Percept Psychophys 66:1171–1189

    PubMed  Google Scholar 

  • Walsh V (2003) A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn Sci 7(11):483–488

    Article  PubMed  Google Scholar 

  • Wittenberg M, Bremmer F, Wachtler T (2008) Perceptual evidence for saccadic updating of color stimuli. J Vis 8(14): 9.1–9

    Google Scholar 

  • Wohlgemuth A (1911) On the after effect of seen movement. Br J Psychol Monogr Suppl 1:1–117

    Google Scholar 

  • Womelsdorf T, Anton-Erxleben K, Pieper F, Treue S (2006) Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nat Neurosci 9(9):1156–1160

    Article  CAS  PubMed  Google Scholar 

  • Wurtz RH (2008) Neuronal mechanisms of visual stability. Vision Res 48(20):2070–2089

    Article  PubMed  Google Scholar 

  • Zipser D, Andersen RA (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331(6158):679–684

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by EEC framework 6 (MEMORY) and 7 (ERC: STANIB) and Italian Ministry of Universities and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Burr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrone, M.C., Cicchini, M. & Burr, D.C. Spatial maps for time and motion. Exp Brain Res 206, 121–128 (2010). https://doi.org/10.1007/s00221-010-2334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2334-z

Keywords

Navigation