Skip to main content
Log in

Attentional influences on the performance of secondary physical tasks during posture control

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We examined the influence of attentional focus and cognitive load on motor performance in a dynamic stick balancing task during the maintenance of upright posture. Dynamical analyses of postural fluctuations revealed the existence of a drift and correct mechanism, with correlational structure reflecting the demands of the stick balancing task. In contrast, experimentally manipulated attentional foci (internal, external) did not influence the variability of postural or fingertip trajectories. However, dual-task cognitive stick balancing performance resulted in decreased variability of postural and fingertip time series. These results are discussed in the context of dual timescale models for posture control and stick balancing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersson G, Hagman J, Talianzadeh R, Svedberg A, Larsen H (2002) Effect of cognitive load on postural control. Brain Res Bull 58:135–139

    Article  PubMed  Google Scholar 

  • Balasubramaniam R, Turvey MT (2000) The handedness of postural fluctuations. Hum Mov Sci 19:667–684

    Article  Google Scholar 

  • Balasubramaniam R, Wing AM (2002) The dynamics of standing balance. Trends Cog Sci 6:531–536

    Article  Google Scholar 

  • Balasubramaniam R, Riley MA, Turvey MT (2000) Specificity of postural sway to the demands of a precision task. Gait Posture 9:65–78

    Google Scholar 

  • Beilock SL, Carr TH, Macmahon C, Starkes JL (2002) When paying attention becomes counterproductive: impact of divided versus skill-focused attention on novice and experienced performance of sensorimotor skills. J Exp Psychol Appl 8:6–16

    Article  PubMed  Google Scholar 

  • Bernstein N (1967) The coordination and regulation of movements. Pergamon, Oxford

    Google Scholar 

  • Cabrera JL, Milton JG (2004) Stick balancing: on-off intermittency and survival times. Nonlin Stud 11:305–317

    Google Scholar 

  • Cluff T, Balasubramaniam R (2009) Motor learning characterized by changing Lévy distributions. PLoS ONE 2009:e5998

    Article  Google Scholar 

  • Cluff T, Riley MA, Balasubramaniam R (2009) Dynamical structure of fingertip trajectories in pole balancing. Neurosci Lett 464:88–92

    Article  CAS  PubMed  Google Scholar 

  • Collins JJ, De Luca CJ (1994) Random walking during quiet standing. Phys Rev Lett 73:746–768

    Google Scholar 

  • Collins JJ, De Luca CJ (1995) Upright, correlated random walks: a statistical-biomechanics approach to the human postural control system. Chaos 5:57–63

    Article  PubMed  Google Scholar 

  • Dault MC, Geurts AC, Mulder TW, Duysens J (2001) Postural control and cognitive task performance in healthy participants while balancing on different support-surface configurations. Gait Posture 14:248–255

    Article  CAS  PubMed  Google Scholar 

  • Delignières D, Ramdani S, Lemoine L, Torre K, Fortes M, Nino G (2006) Fractal analyses for ‘short’ time series: a re-assessment of classical methods. J Math Psychol 50:525–544

    Article  Google Scholar 

  • Doumas M, Rapp MA, Krampe RT (2009) Working memory and postural control: adult age differences in potential for improvement, task priority, and dual-tasking. Geront Psychol Sci 64B:193–201

    Google Scholar 

  • Freitas SMSF, Wieczorek SA, Marchetti PH, Duarte M (2005) Age-related changes in human postural control of prolonged standing. Gait Posture 22:322–330

    Article  PubMed  Google Scholar 

  • Hayhoe M, Ballard D (2005) Eye movements in natural behavior. Trends Cog Sci 9:188–194

    Article  Google Scholar 

  • Lajoie Y, Teasdale N, Bard C, Fleury M (1993) Attentional demands for static and dynamic equilibrium. Exp Brain Res 97:139–144

    Article  CAS  PubMed  Google Scholar 

  • Lakie M, Loram ID (2006) Manually controlled human balancing using visual, vestibular and proprioceptive senses involves a common, low frequency neural process. J Physiol 577:403–416

    Article  CAS  PubMed  Google Scholar 

  • Latash ML, Anson JG (2006) Synergies in health and disease: relations to adaptive changes in motor coordination. Phys Ther 86:1151–1160

    PubMed  Google Scholar 

  • Latash ML, Turvey MT (eds) (1996) Dexterity and its development. Erlbaum, Mahwah, NJ

    Google Scholar 

  • Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev 10:422–437

    Article  Google Scholar 

  • Maravita A, Spence C, Kennett S, Driver J (2002) Tool-use changes multimodal spatial interactions between vision and touch in normal humans. Cognition 83:B25–B34

    Article  PubMed  Google Scholar 

  • Maravita A, Spence C, Driver J (2003) Multisensory integration and the body schema: close to hand and within reach. Curr Biol 13:R531–R539

    Article  CAS  PubMed  Google Scholar 

  • McNevin NH, Wulf G (2002) Attentional focus on supra-postural tasks affects postural control. Hum Mov Sci 21:187–202

    Article  PubMed  Google Scholar 

  • McNevin NH, Shea CH, Wulf G (2003) Increasing the distance of an external focus of attention enhances learning. Psychol Res 67:22–29

    PubMed  Google Scholar 

  • Mergner T, Nasios G, Maurer C, Becker W (2001) Visual object localisation in space, interaction of retinal, eye position, vestibular and neck proprioceptive information. Exp Brain Res 141:33–51

    Article  CAS  PubMed  Google Scholar 

  • Milton JG, Small SS, Solodkin A (2004) On the road to automatic: dynamic aspects in the development of expertise. J Clin Neurophysiol 21:134–143

    Article  PubMed  Google Scholar 

  • Milton JG, Cabrera JL, Ohira T (2008a) Unstable dynamical systems: delays, noise and control. Europhys Lett 83:48001

    Article  Google Scholar 

  • Milton JG, Small SS, Solodkin A (2008b) Imaging motor imagery: methodological issues related to expertise. Methods 45:336–341

    Article  CAS  PubMed  Google Scholar 

  • Milton J, Cabrera JL, Ohira T, Tajima S, Tonosaki Y, Eurich CW, Campbell SA (2009a) The time-delayed inverted pendulum: implications for human balance control. Chaos 19:026110

    Article  PubMed  Google Scholar 

  • Milton JG, Ohira T, Cabrera JL, Fraiser RM, Gyorffy JB, Ruiz FK, Strauss MA, Balch EC, Marin PJ, Alexander JL (2009b) Balancing with vibration: a prelude for “Drift and act” balance control. PLoS ONE 4:e7427

    Article  PubMed  Google Scholar 

  • Milton JG, Townsend J, King M, Ohira T (2009c) Balancing with positive feedback: the case for discontinuous control. Phil Trans R Soc A 367:1181–1193. doi:10.1098/rsta.2008.0257

    Article  PubMed  Google Scholar 

  • Mitra S (2003) Postural costs of suprapostural task load. Hum Mov Sci 22:253–270

    Article  PubMed  Google Scholar 

  • Pellecchia GL (2003) Postural sway increases with attentional demands of concurrent cognitive task. Gait Posture 18:29–34

    Article  PubMed  Google Scholar 

  • Riley MA, Turvey MT (2002) Variability and determinism in motor behavior. J Mot Beh 34:99–125

    Article  Google Scholar 

  • Riley MA, Mitra S, Stoffregen TA, Turvey MT (1997a) Influences of body lean and vision on unperturbed postural sway. Motor Contr 1:229–246

    Google Scholar 

  • Riley MA, Wong S, Mitra S, Turvey MT (1997b) Common effects of touch and vision on postural parameters. Exp Brain Res 117:165–170

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Balasubramaniam R, Turvey MT (1999a) Recurrence quantification analysis of postural fluctuations. Gait Posture 9:65–78

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Stoffregen TA, Grocki MJ, Turvey MT (1999b) Postural stabilization for the control of touching. Hum Mov Sci 18:795–817

    Article  Google Scholar 

  • Rougier PR (2008) What insights can be gained when analyzing the resultant centre of pressure trajectory? Clin Neurophysiol 38:363–373

    Article  Google Scholar 

  • Shea CH, Wulf G (1999) Enhancing motor learning through external-focus instructions and feedback. Hum Mov Sci 18:553–571

    Article  Google Scholar 

  • Stoffregen TA, Smart LJ, Bardy BG, Pagulayan RJ (1999) Postural stabilization of looking. J Expt Psychol Hum Percept Perform 25:1641–1658

    Article  Google Scholar 

  • Theiler J, Gladrikian B, Longtin A, Eubank S, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58D:77–94

    Article  Google Scholar 

  • Ting LH (2007) Dimensional reduction in sensorimotor systems: a framework for understanding muscle coordination of posture. Prog Brain Res 165:299–321

    Article  PubMed  Google Scholar 

  • Todorov E, Jordan M (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Torres-Oveido G, Macpherson JM, Ting LH (2006) Muscle synergy organization is robust across a variety of postural perturbations. J Neurophysiol 96:1530–1546

    Article  Google Scholar 

  • Weeks DL, Forget R, Mouchnino L, Gravel D, Bourbonnais D (2003) Interaction between attention demanding motor and cognitive tasks and static postural stability. Gerontol 49:225–232

    Article  CAS  Google Scholar 

  • Werner G (2009) Fractals in the nervous system: conceptual implications for theoretical neuroscience. epublication arXiv 0910:2741

    Google Scholar 

  • Wulf G, Prinz W (2001) Directing attention to movements effects enhances learning: a review. Psychon Bull Rev 8:648–660

    CAS  PubMed  Google Scholar 

  • Wulf G, McNevin NH, Shea CH (2001) The automaticity of complex motor skill learning as a function of attentional focus. Q J Exp Psychol 54A:1143–1154

    Article  Google Scholar 

  • Wulf G, Weigelt M, Poulter D, McNevin N (2003) Attentional focus on suprapostural tasks affects balance learning. Q J Exp Psychol 7:1191–1211

    Google Scholar 

  • Wulf G, McNevin N, Guadagnoli M (2004) Reciprocal influences of attentionional focus on postural and suprapostural task performance. J Motor Behav 36:189–199

    Article  Google Scholar 

  • Yardley L, Gardner M, Leadbetter A, Lavie N (1999) Effect of articulatory and mental tasks on postural control. NeuroReport 10:215–219

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an NSERC Discovery grant and a CRC awarded to the last author. The first author was supported by an NSERC Alexander Graham Bell Canada Graduate scholarship. We wish to thank Jason Boulet and two anonymous reviewers for comments that helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Balasubramaniam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cluff, T., Gharib, T. & Balasubramaniam, R. Attentional influences on the performance of secondary physical tasks during posture control. Exp Brain Res 203, 647–658 (2010). https://doi.org/10.1007/s00221-010-2274-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2274-7

Keywords

Navigation