Skip to main content
Log in

Optical imaging of digit topography in individual awake and anesthetized squirrel monkeys

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Topographic maps and columnar structures are fundamental to cortical sensory information processing. Most of the knowledge about detailed topographic maps and columnar structure comes mainly from experiments conducted on anesthetized animals. Towards the goal of evaluating whether topographic maps change with respect to behavioral demands, we used intrinsic signal optical imaging in alert monkeys to examine the spatial specificity of cortical topographic representation. Specifically, the somatotopies of neighboring distal finger pad representation in areas 3b and 1 were examined in the same awake and anesthetized squirrel monkey. In comparison to the anesthetized animal, we found larger cortical activation sizes in the alert animal in area 3b, where activation widths were found to overlap with even non-adjacent digits. This may suggest that in the alert animal, there is less inhibition across the somatotopic map within area 3b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahissar E, Vaadia E, Ahissar M, Bergman H, Arieli A, Abeles M (1992) Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science 257:1412–1415

    Article  PubMed  CAS  Google Scholar 

  • Alloway KD, Rosenthal P, Burton H (1989) Quantitative measurements of receptive field changes during antagonism of GABAergic transmission in primary somatosensory cortex of cats. Exp Brain Res 78:514–532

    Article  PubMed  CAS  Google Scholar 

  • Bullier J, Hupe JM, James AC, Girard P (2001) The role of feedback connections in shaping the responses of visual cortical neurons. Prog Brain Res 134:193–204

    Article  PubMed  CAS  Google Scholar 

  • Burton H, Sinclair RJ (2000) Tactile-spatial and cross-modal attention effects in the primary somatosensory cortical areas 3b and 1–2 of rhesus monkeys. Somatosens Mot Res 17:213–228

    Article  PubMed  CAS  Google Scholar 

  • Burton H, MacLeod AM, Videen TO, Raichle ME (1997) Multiple foci in parietal and frontal cortex activated by rubbing embossed grating patterns across fingerpads: a positron emission tomography study in humans. Cereb Cortex 7:3–17

    Article  PubMed  CAS  Google Scholar 

  • Chapin JK, Lin CS (1984) Mapping the body representation in the SI cortex of anesthetized and awake rats. J Comp Neurol 229:199–213

    Article  PubMed  CAS  Google Scholar 

  • Chapin JK, Woodward DJ (1981) Modulation of sensory responsiveness of single somatosensory cortical cells during movement and arousal behaviors. Exp Neurol 72:164–178

    Article  PubMed  CAS  Google Scholar 

  • Chapman CE, Ageranioti-Belanger SA (1991) Discharge properties of neurones in the hand area of primary somatosensory cortex in monkeys in relation to the performance of an active tactile discrimination task. I. Areas 3b and 1. Exp Brain Res 87:319–339

    Article  PubMed  CAS  Google Scholar 

  • Chen LM, Friedman RM, Ramsden BM, LaMotte RH, Roe AW (2001) Fine-scale organization of SI (area 3b) in the squirrel monkey revealed with intrinsic optical imaging. J Neurophysiol 86:3011–3029

    PubMed  CAS  Google Scholar 

  • Chen LM, Friedman RM, Roe AW (2002) Optical imaging reveals area-specific interactions between nociceptive and tactile responses in SI of squirrel monkey. In: Society for Neuroscience Annual Meeting, Orlando, pp 841–842

  • Chen LM, Friedman RM, Roe AW (2003) Optical imaging of a tactile illusion in area 3b of the primary somatosensory cortex. Science 302:881–885

    Article  PubMed  CAS  Google Scholar 

  • Chen LM, Friedman RM, Roe AW (2005) Optical imaging of SI topography in anesthetized and awake squirrel monkeys. J Neurosci 25:7648–7659

    Article  PubMed  CAS  Google Scholar 

  • Cheung SW, Nagarajan SS, Bedenbaugh PH, Schreiner CE, Wang X, Wong A (2001) Auditory cortical neuron response differences under isoflurane versus pentobarbital anesthesia. Hear Res 156:115–127

    Article  PubMed  CAS  Google Scholar 

  • Das A, Gilbert CD (1995) Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature 375:780–784

    Article  PubMed  CAS  Google Scholar 

  • Detsch O, Vahle-Hinz C, Kochs E, Siemers M, Bromm B (1999) Isoflurane induces dose-dependent changes of thalamic somatosensory information transfer. Brain Res 829:77–89

    Article  PubMed  CAS  Google Scholar 

  • DiCarlo JJ, Johnson KO (2000) Spatial and temporal structure of receptive fields in primate somatosensory area 3b: effects of stimulus scanning direction and orientation. J Neurosci 20:495–510

    PubMed  CAS  Google Scholar 

  • Friedberg MH, Lee SM, Ebner FF (1999) Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. J Neurophysiol 81:2243–2252

    PubMed  CAS  Google Scholar 

  • Friedman RM, Chen LM, Roe AW (2004) Modality maps within primate somatosensory cortex. Proc Natl Acad Sci USA 101:12724–12729

    Article  PubMed  CAS  Google Scholar 

  • Friedman RM, Chen LM, Roe AW (2008) Responses of area 1 in anesthesized squirrel monkeys to single and dual site stimulation of the digits. J Neurophysiol 100:3185–3196

    Article  PubMed  Google Scholar 

  • Godde B, Hilger T, von Seelen W, Berkefeld T, Dinse HR (1995) Optical imaging of rat somatosensory cortex reveals representational overlap as topographic principle. Neuroreport 7:24–28

    PubMed  CAS  Google Scholar 

  • Heider B, Roe AW (2002) Time course analyses of intrinsic optical signals in anesthetized and awake macaque monkey visual cortex. Soc Neurosci Abstr 28:658

    Google Scholar 

  • Heider B, Jando G, Siegel RM (2005) Functional architecture of retinotopy in visual association cortex of behaving monkey. Cereb Cortex 15:460–478

    Article  PubMed  Google Scholar 

  • Hsiao SS, O’Shaughnessy DM, Johnson KO (1993) Effects of selective attention on spatial form processing in monkey primary and secondary somatosensory cortex. J Neurophysiol 70:444–447

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci 198:1–59

    Article  PubMed  CAS  Google Scholar 

  • Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1983) Converging patterns of finger representation and complex response properties of neurons in Area 1 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51:327–337

    Google Scholar 

  • Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1993) Rostrocaudal gradients in the neuronal receptive field complexity in the finger region of the alert monkey’s postcentral gyrus. Exp Brain Res 92:360–368

    Article  PubMed  CAS  Google Scholar 

  • Jenkins WM, Merzenich MM, Ochs MT, Allard T, Guic-Robles E (1990) Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J Neurophysiol 63:82–104

    PubMed  CAS  Google Scholar 

  • Jiang W, Lamarre Y, Chapman CE (1990) Modulation of cutaneous cortical evoked potentials during isometric and isotonic contractions in the monkey. Brain Res 536:69–78

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Chapman CE, Lamarre Y (1991) Modulation of the cutaneous responsiveness of neurones in the primary somatosensory cortex during conditioned arm movements in the monkey. Exp Brain Res 84:342–354

    Article  PubMed  CAS  Google Scholar 

  • Juliano SL, Hand PJ, Whitsel BL (1981) Patterns of increased metabolic activity in somatosensory cortex of monkeys Macaca fascicularis, subjected to controlled cutaneous stimulation: a 2-deoxyglucose study. J Neurophysiol 46:1260–1284

    PubMed  CAS  Google Scholar 

  • Lipton PA, White JA, Eichenbaum H (2007) Disambiguation of overlapping experiences by neurons in the medial entorhinal cortex. J Neurosci 27:5787–5795

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Denton JM, Nelson RJ (2005) Neuronal activity in primary motor cortex differs when monkeys perform somatosensory and visually guided wrist movements. Exp Brain Res 167:571–586

    Article  PubMed  Google Scholar 

  • Liu Y, Denton JM, Nelson RJ (2007) Neuronal activity in monkey primary somatosensory cortex is related to expectation of somatosensory and visual go-cues. Exp Brain Res 177:540–550 (Epub 2006)

    Article  PubMed  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  PubMed  CAS  Google Scholar 

  • McKenna TM, Whitsel BL, Dreyer DA (1982) Anterior parietal cortical topographic organization in macaque monkey: a reevaluation. J Neurophysiol 48:289–317

    PubMed  CAS  Google Scholar 

  • Meftah el M, Shenasa J, Chapman CE (2002) Effects of a cross-modal manipulation of attention on somatosensory cortical neuronal responses to tactile stimuli in the monkey. J Neurophysiol 88:3133–3149

    Article  Google Scholar 

  • Nelson RJ (1987) Activity of monkey primary somatosensory cortical neurons changes prior to active movement. Brain Res 406:402–407

    Article  PubMed  CAS  Google Scholar 

  • Nelson RJ, Sur M, Felleman DJ, Kaas JH (1980) Representations of the body surface in postcentral parietal cortex of Macaca fascicularis. J Comp Neurol 192:611–643

    Article  PubMed  CAS  Google Scholar 

  • Panetsos F, Nunez A, Avendano C (1995) Local anaesthesia induces immediate receptive field changes in nucleus gracilis and cortex. Neuroreport 7:150–152

    PubMed  CAS  Google Scholar 

  • Pons TP, Wall JT, Garraghty PE, Cusick CG, Kaas JH (1987) Consistent features of the representation of the hand in area 3b of macaque monkeys. Somatosens Res 4:309–331

    Article  PubMed  CAS  Google Scholar 

  • Raffi M, Siegel RM (2005) Functional architecture of spatial attention in the parietal cortex of the behaving monkey. J Neurosci 25:5171–5186

    Article  PubMed  CAS  Google Scholar 

  • Ramsden BM, Hung CP, Roe AW (2001) Real and illusory contour processing in area V1 of the primate: a cortical balancing act. Cereb Cortex 11:648–665

    Article  PubMed  CAS  Google Scholar 

  • Reed JL, Pouget P, Qi HX, Zhou Z, Bernard MR, Burish MJ, Haitas J, Bonds AB, Kaas JH (2008) Widespread spatial integration in primary somatosensory cortex. Proc Natl Acad Sci USA 105:10233–10237

    Article  PubMed  CAS  Google Scholar 

  • Ries CR, Puil E (1999) Ionic mechanism of isoflurane’s actions on thalamocortical neurons. J Neurophysiol 81:1802–1809

    PubMed  CAS  Google Scholar 

  • Roe AW, Healy FL, Friedman RM, Heider B, Chen LM (2002) Differences in SI topography between anesthetized and awake squirrel monkey as revealed by optical imaging. Soc Neurosci Abstr 28:651–653

    Google Scholar 

  • Rojas MJ, Navas JA, Rector DM (2006) Evoked response potential markers for anesthetic and behavioral states. Am J Physiol Regul Integr Comp Physiol 291:R189–R196

    PubMed  CAS  Google Scholar 

  • Rudolph U, Antkowiak B (2004) Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 5:709–720

    Article  PubMed  CAS  Google Scholar 

  • Schummers J, Marino J, Sur M (2002) Synaptic integration by V1 neurons depends on location within the orientation map. Neuron 36:969–978

    Article  PubMed  CAS  Google Scholar 

  • Shoham D, Grinvald A (2001) The cortical representation of the hand in macaque and human area S–I: high resolution optical imaging. J Neurosci 21:6820–6835

    PubMed  CAS  Google Scholar 

  • Slovin H, Arieli A, Hildesheim R, Grinvald A (2002) Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys. J Neurophysiol 88:3421–3438

    Article  PubMed  Google Scholar 

  • spiYamamori Y, Kishikawa K, Collins JG (1995) Halothane effects on low-threshold receptive field size of rat spinal dorsal horn neurons appear to be independent of supraspinal modulatory systems. Brain Res 702:162–168

    Article  Google Scholar 

  • Steinmetz PN, Roy A, Fitzgerald PJ, Hsiao SS, Johnson KO, Niebur E (2000) Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404:187–190

    Article  PubMed  CAS  Google Scholar 

  • Stryker MP, Jenkins WM, Merzenich MM (1987) Anesthetic state does not affect the map of the hand representation within area 3b somatosensory cortex in owl monkey. J Comp Neurol 258:297–303

    Article  PubMed  CAS  Google Scholar 

  • Sur M, Merzenich MM, Kaas JH (1980) Magnification, receptive-field area, and “hypercolumn” size in areas 3b and 1 of somatosensory cortex in owl monkeys. J Neurophysiol 44:295–311

    PubMed  CAS  Google Scholar 

  • Sur M, Nelson RJ, Kaas JH (1982) Representations of the body surface in cortical areas 3b and 1 of squirrel monkeys: comparisons with other primates. J Comp Neurol 211:177–192

    Article  PubMed  CAS  Google Scholar 

  • Tommerdahl M, Whitsel B (1996) Optical imaging of intrinsic signals in somatosensory cortex. Birkhauser Verlag, Basel

    Google Scholar 

  • Vnek N, Ramsden BM, Hung CP, Goldman-Rakic PS, Roe AW (1999) Optical imaging of functional domains in the cortex of the awake and behaving monkey. Proc Natl Acad Sci USA 96:4057–4060

    Article  PubMed  CAS  Google Scholar 

  • Yamakura T, Harris RA (2000) Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels. Comparison with isoflurane and ethanol. Anesthesiology 93:1095–1101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Barbara Heider and Francine Healy for assistance on initial experiments. Supported by NIH NS044375 (AWR) and DE16606 (LMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Min Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L.M., Friedman, R.M. & Roe, A.W. Optical imaging of digit topography in individual awake and anesthetized squirrel monkeys. Exp Brain Res 196, 393–401 (2009). https://doi.org/10.1007/s00221-009-1861-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1861-y

Keywords

Navigation