Skip to main content

Advertisement

Log in

Vestibular guidance of active head movements

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Vestibular sensors provide precise and timely information about head velocity in space. It is well established that this information is used to stabilize eyes, head and body against movements from outside, i.e., passive movements. Here, we investigate whether vestibular information also helps to monitor and guide active head movements during gaze shifts. We measured head movements during large gaze shifts toward briefly flashed targets in humans with complete vestibular loss (vestibular subjects) and in healthy controls before and after increasing their head moment of inertia. Whereas normally head movements oscillate neither in vestibular subjects nor in controls, the increase in head moment of inertia caused marked head oscillations only in vestibular subjects. We conclude that vestibular information plays an important role in the on-line guidance of active head movements and helps to correct for unexpected changes such as additional torque imposed by an increase in moment of inertia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105:331–348

    Article  PubMed  CAS  Google Scholar 

  • Atkeson CG, Hollerbach JM (1985) Kinematic features of unrestrained vertical arm movements. J Neurosci 5:2318–2330

    PubMed  CAS  Google Scholar 

  • Bizzi E, Polit A, Morasso P (1976) Mechanisms underlying achievement of final head position. J.Neurophysiol. 39:435–444

    PubMed  CAS  Google Scholar 

  • Bock O (1990) Load compensation in human goal-directed arm movements. Behav Brain Res 41:167–177

    Article  PubMed  CAS  Google Scholar 

  • Boyle R, Belton T, McCrea RA (1996) Responses of identified vestibulospinal neurons to voluntary eye and head movements in the squirrel monkey. Ann NY Acad Sci 781:244–263

    Article  PubMed  CAS  Google Scholar 

  • Bresciani JP, Blouin J, Popov K, Bourdin C, Sarlegna F, Vercher JL, Gauthier GM (2002) Galvanic vestibular stimulation in humans produces online arm movement deviations when reaching towards memorized visual targets. Neurosci Lett 318:34–38

    Article  PubMed  CAS  Google Scholar 

  • Bronstein AM (1988) Evidence for a vestibular input contributing to dynamic head stabilization in man. Acta Otolaryngol 105:1–6

    Article  PubMed  CAS  Google Scholar 

  • Coimbra AJ, Lefevre P, Missal M, Olivier E (2000) Difference between visually and electrically evoked gaze saccades disclosed by altering the head moment of inertia. J Neurophysiol 83:1103–1107

    PubMed  CAS  Google Scholar 

  • Cullen KE (2004) Sensory signals during active versus passive movement. Curr Opin Neurobiol 14:698–706

    Article  PubMed  CAS  Google Scholar 

  • Davidson PR, Wolpert DM (2005) Widespread access to predictive models in the motor system: a short review. J Neural Eng 2:S313–S319

    Article  PubMed  Google Scholar 

  • Day BL, Reynolds RF (2005) Vestibular reafference shapes voluntary movement. Curr Biol 15:1390–1394

    Article  PubMed  CAS  Google Scholar 

  • Gauthier GM, Martin BJ, Stark LW (1986) Adapted head- and eye-movement responses to added-head inertia. Aviat Space Environ Med 57:336–342

    PubMed  CAS  Google Scholar 

  • Glasauer S, Hoshi M, Kempermann U, Eggert T, Buttner U (2003) Three-dimensional eye position and slow phase velocity in humans with downbeat nystagmus. J Neurophysiol 89:338–354

    Article  PubMed  CAS  Google Scholar 

  • Gresty M (1987) Stability of the head: studies in normal subjects and in patients with labyrinthine disease, head tremor, and dystonia. Mov Disord 2:165–185

    Article  PubMed  CAS  Google Scholar 

  • Guerraz M, Blouin J, Vercher JL (2003) From head orientation to hand control: evidence of both neck and vestibular involvement in hand drawing. Exp Brain Res 150:40–49

    PubMed  Google Scholar 

  • Guitton D, Kearney RE, Wereley N, Peterson BW (1986) Visual, vestibular and voluntary contributions to human head stabilization. Exp Brain Res 64:59–69

    Article  PubMed  CAS  Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394:780–784

    Article  PubMed  CAS  Google Scholar 

  • Hassler R (1956) Die zentralen Apparate der Wendebewegungen I. Ipsiversive Wendungen durch Reizung einer direkten vestibulo-thalamischen Bahn im Hirnstamm der Katze. Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr 194:456–480

    PubMed  CAS  Google Scholar 

  • Kasai T, Zee DS (1978) Eye-head coordination in labyrinthine-defective human beings. Brain Res 144:123–141

    Article  PubMed  CAS  Google Scholar 

  • Keshner EA, Hain TC, Chen KJ (1999) Predicting control mechanisms for human head stabilization by altering the passive mechanics. J Vestib Res 9:423–434

    PubMed  CAS  Google Scholar 

  • Lackner JR, Dizio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72:299–313

    PubMed  CAS  Google Scholar 

  • Lehnen N (2006) The effect of increased head inertia on eye-head control in human gaze shifts: Analysis and mathematical modeling of a motor system. Thesis. Faculty of Medicine. Ludwig-Maximilians-University Munich

  • Maurer C, Mergner T, Becker W, Jurgens R (1998) Eye-head coordination in labyrinthine-defective humans. Exp Brain Res 122:260–274

    Article  PubMed  CAS  Google Scholar 

  • Maurer C, Mergner T, Becker W, Jurgens R (1999) Eye-head coordination in patients with chronic loss of vestibular function. In: Becker W, Deubel H, Mergner T (eds) Current oculomotor research. Plenum Press, New York, pp 433–442

    Google Scholar 

  • McCrea RA, Gdowski GT, Boyle R, Belton T (1999) Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye-movement related neurons. J Neurophysiol 82:416–428

    PubMed  CAS  Google Scholar 

  • Mittelstaedt, H (1971). Reafferenzprinzip—Apologie und Kritik. In: Kreidel WD, Plattig KH (eds) Vorträge der Erlanger Physiologentagung 1970

  • Peng GC, Hain TC, Peterson BW (1996) A dynamical model for reflex activated head movements in the horizontal plane. Biol Cybern 75:309–319

    Article  PubMed  CAS  Google Scholar 

  • Peng GC, Hain TC, Peterson BW (1999) Predicting vestibular, proprioceptive, and biomechanical control strategies in normal and pathological head movements. IEEE Trans Biomed Eng 46:1269–1280

    Article  PubMed  CAS  Google Scholar 

  • Robinson DA (1963) A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans Biomed Eng 10:137–145

    PubMed  CAS  Google Scholar 

  • Roy JE, Cullen KE (2001) Selective processing of vestibular reafference during self-generated head motion. J Neurosci 21:2131–2142

    PubMed  CAS  Google Scholar 

  • Roy JE, Cullen KE (2004) Dissociating self-generated from passively applied head motion: neural mechanisms in the vestibular nuclei. J Neurosci 24:2102–2111

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain Res 185:359–381

    Article  PubMed  Google Scholar 

  • Tanaka H, Krakauer JW, Qian N (2006) An optimization principle for determining movement duration. J Neurophysiol 95:3875–3886

    Article  PubMed  Google Scholar 

  • Tangorra JL, Jones LA, Hunter IW (2003) Dynamics of the human head-neck system in the horizontal plane: joint properties with respect to a static torque. Ann Biomed Eng 31:606–620

    Article  PubMed  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7:907–915

    Article  PubMed  CAS  Google Scholar 

  • van Beers RJ, Haggard P, Wolpert DM (2004) The role of execution noise in movement variability. J Neurophysiol 91:1050–1063

    Article  PubMed  Google Scholar 

  • von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip (Wechselwirkung zwischen Zentralnervensystem und Peripherie). Die Naturwissenschaften 37:464–476

    Article  Google Scholar 

  • Wagner R, Galiana HL (2001) Unifying vestibulo-ocular reflexes. In: Proceedings of the 23rd annual international conference of the IEEE. Engineering in Medicine and Biology Society, pp 849–852

  • Wilson VJ, Melvill Jones G (1979) Mammalian vestibular physiology. Plenum Press, New York

    Google Scholar 

  • Wolpert DM, Flanagan JR (2001) Motor prediction. Curr Biol 11:R729–R732

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279

    Article  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882

    Article  PubMed  CAS  Google Scholar 

  • Zangemeister WH, Jones A, Stark L (1981) Dynamics of head movement trajectories: main sequence relationship. Exp Neurol 71:76–91

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Thomas Eggert and Thomas Fritz for discussions and advice, and Judy Benson for copy-editing the manuscript. This work was supported by the Bundesministerium für Bildung und Forschung (BCCN Munich 01GQ0440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Lehnen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehnen, N., Büttner, U. & Glasauer, S. Vestibular guidance of active head movements. Exp Brain Res 194, 495–503 (2009). https://doi.org/10.1007/s00221-009-1708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1708-6

Keywords

Navigation