Skip to main content
Log in

The presence of visual gap affects the duration of stopping process

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

A milestone on which relies the voluntary control of behavior is the ability to shape our motor output to meet the needs of the context which we are continuously facing. Even though it is solidly established that contextual information influence movement generation few studies have so far explored their effects on inhibitory processes. We compared the inhibitory control of arm movements of ten healthy right-handed volunteers in a countermanding reaching paradigm with and without the presence of a temporal gap between the offset of the central target and the peripheral target appearance. We found that this perceptual gap reduces the reaction times of hand movements and, at the same time, increases the duration of the stop process, the stop signal reaction time. The two effects are not correlated implying that inhibition and execution of reaching movement are two independent processes influenced by a common factor: the disengagement of selective attention from the central target. Therefore our results support the idea of the existence of a link between spatial selective attention and inhibitory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armstrong IT, Munoz DP (2003) Inhibitory control of eye movements during oculomotor countermanding in adults with attention-deficit hyperactivity disorder. Exp Brain Res 152:444–452

    Article  PubMed  CAS  Google Scholar 

  • Aron AR (2007) The neural basis of inhibition in cognitive control. Neuroscientist 13:214–228

    Article  PubMed  Google Scholar 

  • Aron AR, Durston S, Eagle DM, Logan GD, Stinear CM, Stuphorn V (2007) Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. J Neurosci 27:11860–11864

    Article  PubMed  CAS  Google Scholar 

  • Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6:115–116

    Article  PubMed  CAS  Google Scholar 

  • Aron AR, Poldrack RA (2006) Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus J Neurosci 26:2424–2433

    Article  PubMed  CAS  Google Scholar 

  • Asrress KN, Carpenter RH (2001) Saccadic countermanding: a comparison of central and peripheral stop signals. Vision Res 41:2645–2651

    Article  PubMed  CAS  Google Scholar 

  • Band GPH, van der Molen MW, Logan GD (2003) Horse-race model simulations of the stop-signal procedure. Acta Psychol (Ams) 112:105–142

    Article  Google Scholar 

  • Bekkering H, Pratt J, Abrams RA (1996) The gap effect for eye and hand movements. Percept Psychophys 58:628–635

    PubMed  CAS  Google Scholar 

  • Boucher L, Palmeri TJ, Logan GD, Schall JD (2007a) Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychol Rev 114:376–397

    Article  PubMed  Google Scholar 

  • Boucher L, Stuphorn V, Logan GD, Schall JD, Palmeri TJ (2007b) Stopping eye and hand movements: are the processes independent? Percept Psychophys 69(5):785–801

    PubMed  Google Scholar 

  • Bravo MJ, Nakayama K (1992) The role of attention in different visual-search tasks. Percept Psychophys 51:465–472

    PubMed  CAS  Google Scholar 

  • Chambers CD, Bellgrove MA, Stokes MG, Henderson TR, Garavan H, Robertson IH, Morris AP, Mattingley JB (2006) Executive “brake failure” following deactivation of human frontal lobe. J Cogn Neurosci 18:444–455

    PubMed  Google Scholar 

  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL (1998) A common network of functional areas for attention and eye movements. Neuron 21:761–773

    Article  PubMed  CAS  Google Scholar 

  • Coxon JP, Stinear CM, Byblow WD (2006) Intracortical inhibition during volitional inhibition of prepared action. J Neurophysiol 95:3371–3383

    Article  PubMed  Google Scholar 

  • Deubel H, Bridgeman B, Schneider WX (1998) Immediate post-saccadic information mediates space constancy. Vision Res 38:3147–3159

    Article  PubMed  CAS  Google Scholar 

  • Dum RP, Strick PL (2002) Motor areas of the frontal lobe of the primate. Physiol Behav 77:677–682

    Article  PubMed  CAS  Google Scholar 

  • Eimer M, Van Velzen J, Gherri E, Press C (2006) Manual response preparation and saccade programming are linked to action shifts: ERP evidence for covert attentional orienting and spatially specific modulations of visual processing. Brain Res 1105:7–19

    Article  PubMed  CAS  Google Scholar 

  • Fischer B (1987) The preparation of visually guided saccades. Rev Physiol Biochem Pharmacol 106:1–35

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, Breitmeyer B (1987) Mechanisms of visual attention revealed by saccadic eye movements. Neuropsychologia 25:73–83

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, Ramsperger E (1984) Human express saccades: extremely short reaction times of goal directed eye movements. Exp Brain Res 57(1):191–195

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, Weber H (1993) Express saccades and visual attention. Behav Brain Sci 16(3):553–610

    Article  Google Scholar 

  • Floden D, Stuss DT (2006) Inhibitory control is slowed in patients with right superior medial frontal damage. J Cogn Neurosci 18:1843–1849

    Article  PubMed  Google Scholar 

  • Gómez C, Atienza M, López-Mendoza D, Gómez GJ, Vázquez M (1995) Cortical potentials during gap and non-gap paradigms using manual responses in humans. Neurosci Lett 186(2–3):107–110

    Article  PubMed  Google Scholar 

  • Hanes DP, Patterson WFII, Schall JD (1998) Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. J Neurophysiol 79:817–834

    PubMed  CAS  Google Scholar 

  • Hayhoe MM, Shrivastava A, Mruczek R, Pelz JB (2003) Visual memory and motor planning in a natural task. J Vis 3:49–63

    Article  PubMed  Google Scholar 

  • Isoda M, Hikosaka O (2007) Switching from automatic to controlled action by monkey medial frontal cortex. Nat Neurosci 10:240–248

    Article  PubMed  CAS  Google Scholar 

  • Iversen SD, Mishkin M (1970) Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Exp Brain Res 11:376–386

    Article  PubMed  CAS  Google Scholar 

  • Kalaska JF, Crammond DJ (1995) Deciding not to go: neuronal correlates of response selection in a GO/NOGO task in primate premotor and parietal cortex. Cereb Cortex 5:410–428

    Article  PubMed  CAS  Google Scholar 

  • Kingstone A, Klein RM (1993) Visual offsets facilitate saccadic latency: does predisengagement of visuospatial attention mediate this gap effect? J Exp Psychol Hum Percept Perform 19(6):1251–1265

    Article  PubMed  CAS  Google Scholar 

  • Kramer AF, Humphrey DG, Larish JF, Logan GD, Strayer DL (1994) Aging and inhibition: beyond a unitary view of inhibitory processing in attention. Psychol Aging 9:491–512

    Article  PubMed  CAS  Google Scholar 

  • Land M, Mennie N, Rusted J (1999) The roles of vision and eye movements in the control of activities of daily living. Perception 28:1311–1328

    Article  PubMed  CAS  Google Scholar 

  • Lecas JC, Requin J, Anger C, Vitton N (1986) Changes in neuronal activity of the monkey precentral cortex during preparation for movement. J Neurophysiol 56:1680–1702

    PubMed  CAS  Google Scholar 

  • Levitt H (1971) Transformed up-down method in psychoacustics. J Acoust Soc Am 49(suppl 2):467–477

    Article  PubMed  Google Scholar 

  • Logan GD (1994) On the ability to inhibit thought and actions: a users’ guide to the stop signal paradigm. In: Daghenbach D, Carr TH (eds) Inhibitory processes in attention memory and language. Academic, San Diego, pp 189–239

    Google Scholar 

  • Logan GD, Cowan WB (1984) On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev 91:295–327

    Article  Google Scholar 

  • Logan GD, Irwin DE (2000) Don’t look! Don’t touch! Inhibitory control of eye and hand movements. Psychon Bull Rev 7(1):107–112

    PubMed  CAS  Google Scholar 

  • Logan GD, Schachar RJ, Tannock R (1997) Impulsivity and inhibitory control. Psychol Sci 8:60–64

    Article  Google Scholar 

  • Lünenburger L, Kleiser R, Stuphorn V, Miller LE, Hoffmann KP (2001) A possible role of the superior colliculus in eye–hand coordination. Prog Brain Res 134:109–125

    Article  PubMed  Google Scholar 

  • Machado L, Rafal RD (2000) Strategic control over saccadic eye movements: studies of the fixation offset effect. Percept Psychophys 62(6):1236–1242

    PubMed  CAS  Google Scholar 

  • Mackeben M, Nakayama K (1993) Express attentional shifts. Vision Res 33(1):85–90

    Article  PubMed  CAS  Google Scholar 

  • Marzi CA, Bisiacchi P, Nicoletti R (1991) Is interhemispheric transfer of visuomotor information asymmetric? Evidence from a meta-analysis. Neuropsychologia 29:1163–1177

    Article  PubMed  CAS  Google Scholar 

  • Matsumara M, Kojima J, Gardiner TW, Hikosaka O (1992) Visual and oculomotor functions of the monkey subthalamic nucleus. J Neurophysiol 67:1616–1632

    Google Scholar 

  • Miller J, Riehle A, Requin J (1992) Effects of preliminary perceptual output on neuronal activity of the primary motor cortex. J Exp Psychol Hum Percept Perform 18:1121–1138

    Article  PubMed  CAS  Google Scholar 

  • Mink JM (2003) The basal ganglia and involuntary movements. Arch Neurol 60:1365–1368

    Article  PubMed  Google Scholar 

  • Mirabella G, Pani P, Paré M, Ferraina S (2006a) Inhibitory control of reaching movements in humans. Exp Brain Res 174:240–255

    Article  PubMed  Google Scholar 

  • Mirabella G, Pani P, Mattia M, Del Giudice P, Ferraina S (2006b) Neural basis of inhibitory control of reaching movements in the dorsal premotor cortex of rhesus monkeys. Soc Neurosci. Abstr 307.9

  • Mirabella G, Pani P, Ferraina S (2008) Context influences on the preparation and execution of reaching movements. Cogn Neuropsychol. doi:10.1080/02643290802003216

  • Moll L, Kuypers HG (1977) Premotor cortical ablations in monkeys: contralateral changes in visually-guided reaching behaviour. Science 198:317–319

    Article  PubMed  CAS  Google Scholar 

  • Morein-Zamir S, Kingstone A (2006) Fixation offset and stop signal intensity effects on saccadic countermanding: a crossmodal investigation. Exp Brain Res. 175:453–462

    Article  PubMed  Google Scholar 

  • Munoz DP, Schall JD (2004) Concurrent, distributed control of saccade initiation in the frontal eye field and superior colliculus. In: Hall WC, Moschovakis A (eds) The superior colliculus: new approaches for studying sensorimotor integration. CRC Press, Boca Raton, pp 55–82

    Google Scholar 

  • Munoz DP, Wurtz RH (1993a) Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. J Neurophysiol 70:559–575

    PubMed  CAS  Google Scholar 

  • Munoz DP, Wurtz RH (1993b) Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. J Neurophysiol 70:576–589

    PubMed  CAS  Google Scholar 

  • Nachev P, Wydell H, O’neill K, Husain M, Kennard C (2007) The role of the pre-supplementary motor area in the control of action. Neuroimage 36(suppl 2):t155–t163

    Article  PubMed  Google Scholar 

  • Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 43:111–117

    Article  PubMed  Google Scholar 

  • Paré M, Hanes DP (2003) Controlled movement processing: superior colliculus activity associated with countermanding saccades. J Neurosci 26:6480–6489

    Google Scholar 

  • Paré M, Munoz DP (1996) Saccadic reaction time in the advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence. J Neurophysiol 76:3666–3681

    PubMed  Google Scholar 

  • Picton TW, Stuss DT, Alexander MP, Shallice T, Binns MA, Gilligham S (2007) Effects of focal frontal lesions on response inhibition. Cereb Cortex 17:826–838

    Article  PubMed  Google Scholar 

  • Port NL, Kruse W, Lee D, Georgopoulos AP (2001) Motor cortical activity during interception of moving targets. J Cogn Neurosci 13:306–318

    Article  PubMed  CAS  Google Scholar 

  • Posner MI (1980) Orienting of attention. Q J Exp Psychol 32(1):3–25

    Article  PubMed  CAS  Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42

    Article  PubMed  CAS  Google Scholar 

  • Pratt J, Nghiem T (2000) The role of the gap effect in the orienting of attention: evidence for express attentional shifts. Vis Cogn 16:629–644

    Google Scholar 

  • Pratt J, Bekkering H, Abrams RA, Adam J (1999) The gap effect for spatially oriented responses. Acta Psychol (Ams) 102(1):1–12

    Article  CAS  Google Scholar 

  • Pratt J, Bekkering H, Leung M (2000) Estimating the components of the gap effect. Percept Psychophys 58(4):628–635

    Google Scholar 

  • Pratt J, Lajonchere CM, Abrams RA (2006) Attentional modulation of the gap effect. Vision Res 46(16):2602–2607

    Article  PubMed  Google Scholar 

  • Reuter-Lorenz PA, Oonk HM, Barnes LL, Hughes HC (1995) Effects of warning signals and fixation point offsets on the latencies of pro- versus antisaccades: implications for an interpretation of the gap effect. Exp Brain Res 103(2):287–293

    Article  PubMed  CAS  Google Scholar 

  • Ridderinkhof KR, Band GPH, Logan GD (1999) A study of adaptive behavior: effects of age and irrelevant information on the ability to inhibit one’s actions. Acta Psychologica 101:315–337

    Article  Google Scholar 

  • Riehle A, Requin J (1993) The predictive value for performance speed of preparatory changes in neuronal activity of the monkey motor and premotor cortex. Behav Brain Res 53:35–49

    Article  PubMed  CAS  Google Scholar 

  • Riehle A, MacKay WA, Requin J (1994) Are extent and force independent movement parameters? Preparation- and movement-related neuronal activity in the monkey cortex. Exp Brain Res 99:56–74

    Article  PubMed  CAS  Google Scholar 

  • Sakagami M, Ki Tsutsui, Lauwereyns J, Koizumi M, Kobayashi S, Hokosaka O (2001) A code for behavioral inhibition on the basis of color, but not motion, in ventrolateral prefrontal cortex of macaque monkey. J Neurosci 21:4801–4808

    PubMed  CAS  Google Scholar 

  • Sasaki K, Gemba H, Tsujimoto T (1989) Suppression of visually initiated hand movement by stimulation of the prefrontal cortex in the monkey. Brain Res 495:100–107

    Article  PubMed  CAS  Google Scholar 

  • Saslow MG (1967) Effects of components of displacement-step stimuli upon latency for saccadic eye movement. J Opt Soc Am 57:1024–1029

    Article  PubMed  CAS  Google Scholar 

  • Schachar R, Mota VL, Logan GD, Tannock R, Klim P (2000) Confirmation of an inhibitory control deficit in attention-deficit/hyperactivity disorder. J Abnorm Child Psychol 28:227–235

    Article  PubMed  CAS  Google Scholar 

  • Schall JD, Thompson KG (1999) Neural selection and control of visually guided eye movements. Annu Rev Neurosci 22:241–259

    Article  PubMed  CAS  Google Scholar 

  • Schiegg A, Deubel H, Schneider WX (2003) Attentional selection during preparation of prehension movements. Vis Cogn 10:409–431

    Article  Google Scholar 

  • Sergeant JA, Guerts H, Oosterlaan J (2002) How specific is a deficit of executive functioning for attention-deficit/hyperactivity disorder? Behav Brain Res 130:3–28

    Article  PubMed  Google Scholar 

  • Sheliga BM, Riggio L, Craighero L, Rizzolatti G (1995) Spatial attention-determined modifications in saccade trajectories. Neuroreport 6:585–588

    Article  PubMed  CAS  Google Scholar 

  • Song JH, Nakayama K (2006) Role of focal attention on latencies and trajectories of visually guided manual pointing. J Vis 6:982–995

    Article  PubMed  Google Scholar 

  • Song JH, Nakayama K (2007) Fixation offset facilitates saccades and manual reaching for single but not multiple target displays. Exp Brain Res 177:223–232

    Article  PubMed  Google Scholar 

  • Stevenson SA, Elsley JK, Corneil BD (2007) A “Gap” effect on SSRTs: priming of the STOP process with varying states of visual fixation in a saccadic countermanding task. Soc Neurosci. Abstr. 719.4

  • Stuphorn V, Hoffmann KP, Miller LE (1999) Correlation of primate superior colliculus and reticular formation discharge with proximal limb muscle activity. J Neurophysiol 81:1978–1982

    PubMed  CAS  Google Scholar 

  • Stuss DT, Shallice T, Alexander MP, Picton TW (1995) A multidisciplinary approach to anterior attentional functions. Ann N Y Acad Sci 769:191–211

    Article  PubMed  CAS  Google Scholar 

  • van Boxtel GJ, van der Molen MW, Jennings JR, Brunia CH (2001) A psychophysiological analysis of inhibitory motor control in the stop-signal paradigm. Biol Psychol 8:229–262

    Article  Google Scholar 

  • van den Wildenberg WP, van der Molen MW, Logan GD (2002) Reduced response readiness delays stop signal inhibition. Acta Psychol (Amst) 111:155–169

    Google Scholar 

  • van den Wildenberg WP, van Boxtel GJ, van der Molen MW (2003) The duration of response inhibition in the stop-signal paradigm varies with response force. Acta Psychol (Amst) 114:115–129

    Google Scholar 

  • van den Wildenberg WP, van Boxtel GJ, van der Molen MW, Bosch DA, Speelman JD, Brunia CH (2006) Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson’s disease. J Cogn Neurosci 18:626–636

    Article  PubMed  Google Scholar 

  • Weber H, Fischer B (1995) Gap duration and location of attention focus modulate the occurrence of left/right asymmetries in the saccadic reaction times of human subjects. Vision Res 35(7):987–998

    Article  PubMed  CAS  Google Scholar 

  • Weinrich M, Wise SP (1982) The premotor cortex of the monkey. J Neurosci 2:1329–1345

    PubMed  CAS  Google Scholar 

  • Werner W, Hoffmann KP, Dannenberg S (1997) Anatomical distribution of arm movement-related neurons in the primate superior colliculus and underlying reticular formation in comparison with visual and saccadic cells. Exp Brain Res 115:206–216

    Article  PubMed  CAS  Google Scholar 

  • Wetherill GB (1963) Sequential estimation of quantal response curves. J R Stat Soc B25:1–48

    Google Scholar 

  • Wetherill GB (1966) Sequential methods in statistic. Methuen (eds) London

Download references

Acknowledgments

This work was supported by the grant 530/F4/1 from the Italian National Institute of Health and by the grant 2005051741 from the MIUR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Ferraina.

Additional information

G. Mirabella and P. Pani equally contributed to the present paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirabella, G., Pani, P. & Ferraina, S. The presence of visual gap affects the duration of stopping process. Exp Brain Res 192, 199–209 (2009). https://doi.org/10.1007/s00221-008-1570-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1570-y

Keywords

Navigation