Skip to main content

Advertisement

Log in

Position sense asymmetry

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Asymmetries in upper limb position sense have been explained in the context of a left limb advantage derived from differences in hemispheric specialization in the processing of kinesthetic information. However, it is not clearly understood how the comparison of perceptual information associated with passive limb displacement and the corresponding matching movement resulting from the execution of a motor command contributes to these differences. In the present study, upper limb position sense was investigated in 12 right-hand-dominant young adults performing wrist position matching tasks which varied in terms of interhemispheric transfer, memory retrieval and whether the reference position was provided by the same or opposite limb. Right and left hand absolute matching errors were similar when the reference and matching positions were produced by the same hand but were 36% greater when matching the reference position with the opposite hand. When examining the constant errors generated from matching movements made with the same hand that provided the reference, the right and left hand matching errors (≈3°) were similar. However, when matching with the opposite limb, a large overshoot (P < 0.05) characterized the error when the right hand matched the left hand reference while a large undershoot (P < 0.05) characterized the error when the left hand matched the right hand reference. The overshoot and undershoot were of similar magnitude (≈4°). Although asymmetries in the central processing of proprioceptive information such as interhemispheric transfer may exist, the present study suggests that asymmetries in position sense predominantly result from a difference in the “gain of the respective proprioceptive sensory-motor loops”. This new hypothesis is strongly supported by a dual-linear model representing the right and left hand sensory-motor systems as well as morphological and physiological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamo DE, Alexander NB, Brown SH (2008) The influence of age and physical activity on upper limb proprioceptive ability. J Aging Phys Act (In press)

  • Adamo DE, Martin BJ, Brown SH (2007) Age-related differences in upper limb proprioceptive acuity. Percept Mot Skills 104:1297–1309

    Article  PubMed  Google Scholar 

  • Aimonetti JM, Morin D, Schmied A, Vedel JP, Pagni S (1999) Proprioceptive control of wrist extensor motor units in humans: dependence on handedness. Somatosens Mot Res 16:11–29

    Article  PubMed  CAS  Google Scholar 

  • Allen SC, Khattab A (2006) The tendency to altered perception of airflow resistance in aged subjects might be due mainly to a reduction in diaphragmatic proprioception. Med Hypotheses 67:1406–1410

    Article  PubMed  CAS  Google Scholar 

  • Allen TJ, Ansems GE, Proske U (2007) Effects of muscle conditioning on position sense at the human forearm during loading or fatigue of elbow flexors and the role of the sense of effort. J Physiol 580:423–434

    Article  PubMed  CAS  Google Scholar 

  • Baraldi P, Porro CA, Serafini M, Pagnoni G, Murari C, Corazza R, Nichelli P (1999) Bilateral representation of sequential finger movements in human cortical areas. Neurosci Lett 269:95–98

    Article  PubMed  CAS  Google Scholar 

  • Burke D, Hagbarth KE, Lofstedt L, Wallin BG (1976) The responses of human muscle spindle endings to vibration during isometric contraction. J Physiol 261:695–711

    PubMed  CAS  Google Scholar 

  • Carnahan H, Elliott D (1987) Pedal asymmetry in the reproduction of spatial locations. Cortex 23:157–159

    PubMed  CAS  Google Scholar 

  • Carson RG, Chua R, Elliott D, Goodman D (1990a) The contribution of vision to asymmetries in manual aiming. Neuropsychologia 28:1215–1220

    Article  PubMed  CAS  Google Scholar 

  • Carson RG, Elliott D, Goodman D, Dickinson J (1990b) Manual asymmetries in the reproduction of a 3-dimensional spatial location. Neuropsychologia 28:99–103

    Article  PubMed  CAS  Google Scholar 

  • Clark FJ, Larwood KJ, Davis ME, Deffenbacher KA (1995) A metric for assessing acuity in positioning joints and limbs. Exp Brain Res 107:73–79

    Article  PubMed  CAS  Google Scholar 

  • Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123

    PubMed  CAS  Google Scholar 

  • Criscimagna-Hemminger SE, Donchin O, Gazzaniga MS, Shadmehr R (2003) Learned dynamics of reaching movements generalize from dominant to nondominant arm. J Neurophysiol 89:168–176

    Article  PubMed  Google Scholar 

  • Feldman AG, Latash ML (1982) Inversions of vibration-induced senso-motor events caused by supraspinal influences in man. Neurosci Lett 31:147–151

    Article  PubMed  CAS  Google Scholar 

  • Goble DJ, Brown SH (2007) Task-dependent asymmetries in the utilization of proprioceptive feedback for goal-directed movement. Exp Brain Res 180:693–704

    Article  PubMed  Google Scholar 

  • Goble DJ, Lewis CA, Brown SH (2006) Upper limb asymmetries in the utilization of proprioceptive feedback. Exp Brain Res 168:307–311

    Article  PubMed  Google Scholar 

  • Goodwin GM, McCloskey DI, Matthews PB (1972a) A systematic distortion of position sense produced by muscle vibration. J Physiol 221:8P–9P

    PubMed  CAS  Google Scholar 

  • Goodwin GM, McCloskey DI, Matthews PB (1972b) Proprioceptive illusions induced by muscle vibration: contribution by muscle spindles to perception? Science 175:1382–1384

    Article  PubMed  CAS  Google Scholar 

  • Haaland KY, Elsinger CL, Mayer AR, Durgerian S, Rao SM (2004) Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. J Cogn Neurosci 16:621–636

    Article  PubMed  Google Scholar 

  • Haaland KY, Harrington D (1989a) The role of the hemispheres in closed loop movements. Brain Cogn 9:158–180

    Article  PubMed  CAS  Google Scholar 

  • Haaland KY, Harrington DL (1989b) Hemispheric control of the initial and corrective components of aiming movements. Neuropsychologia 27:961–969

    Article  PubMed  CAS  Google Scholar 

  • Haaland KY, Harrington DL, Grice JW (1993) Effects of aging on planning and implementing arm movements. Psychol Aging 8:617–632

    Article  PubMed  CAS  Google Scholar 

  • Haude RH, Morrow-Tlucak M, Fox DM, Pickard KB (1987) Differential visual field-interhemispheric transfer: can it explain sex and handedness differences in lateralization? Percept Mot Skills 65:423–429

    PubMed  CAS  Google Scholar 

  • Imanaka K, Abernethy B, Yamauchi M, Funase K, Nishihira Y (1995) Hemispace asymmetries and laterality effects in arm positioning. Brain Cogn 29:232–253

    Article  PubMed  CAS  Google Scholar 

  • Jagacinski R, Flach J (2003) Control theory for humans: quantitative approaches to modeling performance. Lawrence Erlbaum Associates, Mahwah

    Google Scholar 

  • Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261:615–617

    Article  PubMed  CAS  Google Scholar 

  • Lackner JR, Taublieb AB (1983) Reciprocal interactions between the position sense representations of the two forearms. J Neurosci 3:2280–2285

    PubMed  CAS  Google Scholar 

  • Lackner JR, Rabin E, DiZio P (2000) Fingertip contact suppresses the destabilizing influence of leg muscle vibration. J Neurophysiol 84:2217–2224

    PubMed  CAS  Google Scholar 

  • Martin BJ, Roll JP, Hugon M (1990) Modulation of cutaneous flexor responses induced in man by vibration-elicited proprioceptive or exteroceptive inputs. Aviat Space Environ Med 61:921–928

    PubMed  CAS  Google Scholar 

  • Nishizawa S, Saslow CA (1987) Lateralization of kinesthetically guided spatial perception. Cortex 23:485–494

    PubMed  CAS  Google Scholar 

  • Nudo RJ, Jenkins WM, Merzenich MM, Prejean T, Grenda R (1992) Neurophysiological correlates of hand preference in primary motor cortex of adult squirrel monkeys. J Neurosci 12:2918–2947

    PubMed  CAS  Google Scholar 

  • Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16:785–807

    PubMed  CAS  Google Scholar 

  • Parlow SE, Kinsbourne M (1989) Asymmetrical transfer of training between hands: implications for interhemispheric communication in normal brain. Brain Cogn 11:98–113

    Article  PubMed  CAS  Google Scholar 

  • Riolo-Quinn L (1991) Relationship of hand preference to accuracy on a thumb-positioning task. Percept Mot Skills 73:267–273

    PubMed  CAS  Google Scholar 

  • Rodier S, Euzet JP, Gahery Y, Paillard J (1991) Crossmodal versus intramodal evaluation of the knee joint angle : A normative study in a population of young adults. Hum Mov Sci 10:689–712

    Article  Google Scholar 

  • Roll JP (1981) Contribution de la proprioception musculaire a la perception et au contrôle du momvement chez l’homme, Thèse de doctorat Es Sciences. Université Aix-Marseille I

  • Roll JP, Vedel JP (1982) Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res 47:177–190

    Article  PubMed  CAS  Google Scholar 

  • Roll JP, Gilhodes JC, Tardy-Gervet MF (1980) Effects of vision on tonic vibration response of a muscle or its antagonists in normal man (author’s transl). Experientia 36:70–72

    Article  PubMed  CAS  Google Scholar 

  • Roy EA, MacKenzie C (1978) Handedness effects in kinesthetic spatial location judgements. Cortex 14:250–258

    PubMed  CAS  Google Scholar 

  • Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258

    Article  PubMed  Google Scholar 

  • Seidler RD, Alberts JL, Stelmach GE (2001) Multijoint movement control in Parkinson’s disease. Exp Brain Res 140:335–344

    Article  PubMed  CAS  Google Scholar 

  • Soechting JF (1982) Does position sense at the elbow reflect a sense of elbow joint angle or one of limb orientation? Brain Res 248:392–395

    Article  PubMed  CAS  Google Scholar 

  • Teulings HL, Contreras-Vidal JL, Stelmach GE, Adler CH (1997) Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp Neurol 146:159–170

    Article  PubMed  CAS  Google Scholar 

  • Walsh LD, Hesse CW, Morgan DL, Proske U (2004) Human forearm position sense after fatigue of elbow flexor muscles. J Physiol 558:705–715

    Article  PubMed  CAS  Google Scholar 

  • Walsh LD, Allen TJ, Gandevia SC, Proske U (2006) Effect of eccentric exercise on position sense at the human forearm in different postures. J Appl Physiol 100:1109–1116

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sainburg RL (2004) Interlimb transfer of novel inertial dynamics is asymmetrical. J Neurophysiol 92:349–360

    Article  PubMed  Google Scholar 

  • Worringham CJ, Stelmach GE (1985) The contribution of gravitational torques to limb position sense. Exp Brain Res 61:38–42

    Article  PubMed  CAS  Google Scholar 

  • Wrisberg CA, Winter TP (1985) Reproducing the end location of a positioning movement: the long and short of it. J Mot Behav 17:242–254

    PubMed  CAS  Google Scholar 

  • Yamauchi M, Imanaka K, Nakayama M, Nishizawa S (2004) Lateral difference and interhemispheric transfer on arm-positioning movement between right and left handers. Percept Mot Skills 98:1199–1209

    PubMed  Google Scholar 

Download references

Acknowledgments

A National Institute on Aging T32 training grant AG000114 to DA, and a National Institute on Aging R03 grant AG 025120-01 to Dr. S. Brown supported this work, performed in the Division of Kinesiology at the University of Michigan. The authors are grateful to J. Foulke and E.Claxton for designing the motorization of the manipulanda and providing technical assistance for the development of the control interface. We also thank C. Waechter for her help in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard J. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamo, D.E., Martin, B.J. Position sense asymmetry. Exp Brain Res 192, 87–95 (2009). https://doi.org/10.1007/s00221-008-1560-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1560-0

Keywords

Navigation