Skip to main content

Advertisement

Log in

Cortical processing of tactile stimuli applied in quick succession across the fingertips: temporal evolution of dipole sources revealed by magnetoencephalography

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We used magnetoencephalography (MEG) in 10 healthy human subjects to study cortical responses to tactile stimuli applied to the fingertips of digits 2–5 of the right hand. Each stimulus lasted 50 ms and was produced by air-driven elastic membranes. Four-hundred stimuli were delivered on each finger in three temporal patterns (conditions). In the “Discrete” condition, stimuli were applied to each finger repetitively with an interstimulus interval (ISI) of 1–2 s. In the “Continuous” condition, stimuli were applied to the fingers sequentially as four-stimulus trains with zero ISI and 1–2 s intervening between trains. Finally, in the “Gap” condition, stimuli were applied as in the Continuous condition but with an ISI of 50 ms. A sensation of tactile motion across fingers (digit 2 → digit 5) was reported by all subjects in the Continuous and Gap conditions. Cortical responses were extracted as single equivalent current dipoles over a period of 1 s following stimulus onset. In all three conditions, initial responses in left primary somatosensory cortex (SI) were observed ~20 to 50 ms after stimulus onset and were followed by additional left SI responses and bilateral responses in the secondary somatosensory cortex (SII). In addition, in the Continuous and Gap conditions, there was an activation of the precentral gyrus, the temporal aspects of which depended on the temporal relation of the administered stimuli, as follows. An ISI of 0 ms led to activation of the precentral gyrus shortly after the second stimulation, whereas an ISI of 50 ms led to activation of the precentral gyrus after the third stimulation. The current findings support results from previous studies on temporal activity patterns in SI and SII, verify the participation of the precentral gyrus during tactile motion perception and, in addition, reveal aspects of integration of sequential sensory stimulations over nonadjacent areas as well as temporal activity patterns in the postcentral and precentral gyri.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahissar E, Kleinfeld D (2003) Closed-loop neuronal computations: focus on vibrissa somatosensation in rat. Cereb Cortex 13:53–62

    Article  PubMed  Google Scholar 

  • Armitage P (1975) Sequential medical trials. Wiley, New York

    Google Scholar 

  • Biermann K, Schmitz F, Wittee OW, Konczak J, Freund H-J, Schnitzler A (1998) Interaction of finger representation in the human first somatosensory cortex: a neuromagnetic study. Neurosci Lett 251:13–16

    Article  PubMed  CAS  Google Scholar 

  • Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296

    Article  PubMed  CAS  Google Scholar 

  • Cheyne D, Gaetz W, Garnero L, Lachaux J-P, Ducorps A, Schwartz D, Varela FJ (2003) Neuromagnetic imaging of cortical accompanying tactile stimulation. Cogn Brain Res 17:599–611

    Article  Google Scholar 

  • Furukawa S, Middlebrooks JC (2001) Cortical representation of auditory space: Information-bearing features of spike patterns. J Neurophysiol 87:1749–1762

    Google Scholar 

  • Ghazanfar AA, Stambaugh CR, Nicolelis MA (2000) Encoding of tactile stimulus location by somatosensory thalamocortical ensembles. J Neurosci 20:3761–3775

    PubMed  CAS  Google Scholar 

  • Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402:75–79

    Article  PubMed  CAS  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi R, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of signal processing in the human brain. Rev Modern Phys 65:413–497

    Article  Google Scholar 

  • Hari R, Reinikainen K, Kaukoranta E, Hämäläinen M, Ilmoniemi R, Penttinen A, Salminen J, Teszner D (1984) Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroencephalogr Clin Neurophysiol 57:254–263

    Article  PubMed  CAS  Google Scholar 

  • Hari R, Forss N (1999) Magnetoencephalography in the study of human somatosensory cortical processing. Philos Trans R Soc Lond B Biol Sci 354:1145–1154

    Article  PubMed  CAS  Google Scholar 

  • Hoechstetter K, Rupp A, Stančák A, Meinck H-M, Weckesser D, Bornfleth H, Stippich C, Berg P, Scherg M (2000) Magnetic source imaging of tactile input shows task-independent attention effects in SII. NeuroReport 11:2461–2465

    Article  PubMed  CAS  Google Scholar 

  • Hoechstetter K, Rupp A, Stančák A, Meinck H-M, Stippich C, Berg P, Scherg M (2001) Interaction of tactile input in the human primary and secondary somatosensory cortex—a Magnetoencephalographic study. NeuroImage 14:759–767

    Article  PubMed  CAS  Google Scholar 

  • Huttunen J (1997) Does the P35m SEF deflection really come from the motor cortex? Electroencephalogr Clin Neurophysiol 104:101–102

    Article  PubMed  CAS  Google Scholar 

  • Johansson RS, Birznieks I (2004) First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat Neurosci 7:170–177

    Article  PubMed  CAS  Google Scholar 

  • Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH, Nelson RJ, Sur M, Lin CS, Merzenich MM (1979) Multiple representations of the body within the primary somatosensory cortex of primates. Science 204:521–523

    Article  PubMed  CAS  Google Scholar 

  • Kakigi R, Hoshiyama M, Shimojo M, Naka D, Yamasaki H, Watanabe S, Xiang J, Maeda K, Lam K, Itomi K, Nakamura A (2000) The somatosensory evoked magnetic fields. Prog Neurobiol 61:495–523

    Article  PubMed  CAS  Google Scholar 

  • Kaufman L, Okada Y, Brenner D, Williamson SJ (1981) On the relation between somatic evoked potentials and fields. Int J Neurosci 15:223–239

    Article  PubMed  CAS  Google Scholar 

  • Kleinfeld D, Ahissar E, Diamond ME (2006) Active sensation: insights from the rodent vibrissa sensorimotor system. Curr Opin Neurobiol 16:435–444

    Article  PubMed  CAS  Google Scholar 

  • Langheim FJP, Merkle AN, Leuthold AC, Lewis SM, Georgopoulos AP (2006) Dipole analysis of magnetoencephalographic data during continuous shape copying. Exp Brain Res 170:513–521

    Article  PubMed  Google Scholar 

  • Leuthold AC (2003) Subtraction of heart artifact from MEG data: the matched filter revisited. Society for Neuroscience Abstracts 863.15

    Google Scholar 

  • Lin YY, Kajola M (2003) Neuromagnetic somatosensory responses to natural moving tactile stimulation. Can J Neurol Sci 30:31–35

    PubMed  Google Scholar 

  • Miller KD, Pinto DJ, Simons DJ (2001) Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Curr Opin Neurobiol 11:488–497

    Article  PubMed  CAS  Google Scholar 

  • Mogilner A, Grossman JA, Ribary U, Joliot M, Volkmann J, Rapaport D, Beasley RW, Llinás RR (1993) Somatosensory cortical plasticity in adult humans revealed by magnetoencephalography. Proc Natl Acad Sci USA 90:3593–3597

    Article  PubMed  CAS  Google Scholar 

  • Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutgeb S, Schall JD, Leventhal AG (1998) Signal timing across the macaque visual system. J Neurophysiol 79:3272–3278

    PubMed  CAS  Google Scholar 

  • Soto-Faraco S, Spence C, Lloyd D, Kingstone A (2004) Moving multisensory research along: motion perception across sensory modalities. Curr Direct Psychol Sci 13:29–32

    Article  Google Scholar 

  • Stefanis C, Jasper H (1964a) Intracellular microelectrode studies of antidromic responses in cortical pyramidal tract neurons. J Neurophysiol 27:828–854

    PubMed  CAS  Google Scholar 

  • Stefanis C, Jasper H (1964b) Recurrent collateral inhibition in pyramidal tract neurons. J Neurophysiol 27:855–877

    PubMed  CAS  Google Scholar 

  • Taira M, Boline J, Smyrnis N, Georgopoulos AP, Ashe J (1995) On the relations between single cell activity in the motor cortex and the direction and magnitude of three-dimensional static isometric force. Exp Brain Res 109:367–376

    Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme Medical Publishers, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-In-Aid Program, Graduate School, University of Minnesota, to I. G. Koutlas, the Department of Veterans Affairs, and the American Legion Brain Sciences Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis G. Koutlas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karageorgiou, E., Koutlas, I.G., Alonso, A.A. et al. Cortical processing of tactile stimuli applied in quick succession across the fingertips: temporal evolution of dipole sources revealed by magnetoencephalography. Exp Brain Res 189, 311–321 (2008). https://doi.org/10.1007/s00221-008-1425-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1425-6

Keywords

Navigation