Skip to main content
Log in

Changes of metabolite profile in kainic acid induced hippocampal injury in rats measured by HRMAS NMR

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The solid-state high resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) technique was applied in this work to characterize and quantify the neurochemical changes in the rat hippocampus (CA1 or CA3) after local administration of kainic acid (KA). Intact tissue samples obtained from the KA treated and control brain samples were analyzed using HRMAS NMR. Metabolite profiles from NMR spectra of KA treated and control samples revealed the statistical significant decrease of N-acetylaspartate (NAA) and an increase of choline derivatives in the CA1 and CA3 directly receiving KA injection. Less extensive KA-induced metabolic changes were found in the hippocampi sample from the area contralateral to the site receiving KA administration. These results provided quantitative metabolic information on KA-induced neuronal loss and cell breakdown. In addition, the present study also revealed increased level of γ-aminobutyric acid (GABA) and glutamate after KA treatment, suggesting that the cellular release of inhibitory and excitatory amino acids can be quantified using this method. KA induced microglia activation was evidenced by increased level of myo-insitol (myo-I). This study demonstrates that ex vivo HRMAS NMR is a useful tool for analyzing and quantifying changes of neurochemistry and cerebral metabolism in the intact brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

KA:

Kainic acid

HRMAS:

High resolution magic angle spinning

NMR:

Nuclear magnetic resonance

MRS:

Magnetic resonance spectroscopy

NAA:

N-acetyl-aspartate

Cho:

Choline

PC:

Phosphocholine

GPC:

Glyocerphosphocholine

Cre:

Creatine

myo-I:

Myo-inositol

Glu:

Glutamate

Gln:

Glutamine

GABA:

γ-aminobutyric acid

DANTE:

Delays alternating with nutations for tailored excitation

References

  • Abraham H, Losonczy A, Czeh G, Lazar G (2001) Rapid activation of microglial cells by hypoxia, kainic acid, and potassium ions in slice preparations of the rat hippocampus. Brain Res 906:115–126

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Riche D, Tremblay E, Charton G (1981) Alterations in local glucose consumption following systemic administration of kainic acid, bicuculline or metrazol. Eur Neurol 20:173–175

    PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Repressa A, Tremblay E, Nitecka L (1986) Selective and non-selective seizure related brain damage produced by kainic acid. Adv Exp Med Biol 203:647–657

    PubMed  CAS  Google Scholar 

  • Bianchi L, Ballini C, Colivicchi MA, Della Corte L, Giovannini MG, Pepeu G (2003) Investigation on acetylcholine, aspartate, glutamate and GABA extracellular levels from ventral hippocampus during repeated exploratory activity in the rat. Neurochem Res 28:565–573

    Article  PubMed  CAS  Google Scholar 

  • Bruhn T, Christensen T, Diemer NH (1997) Evidence for increased cellular uptake of glutamate and aspartate in the rat hippocampus during kainic acid seizures. A microdialysis study using the “indicator diffusion’ method. Epilepsy Res 26:363–371

    Article  PubMed  CAS  Google Scholar 

  • Cheng LL, Ma MJ, Becerra L, Ptak T, Tracey I, Lackner A, Gonzalez RG (1997) Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy. Proc Natl Acad Sci USA 94:6408–6413

    Article  PubMed  CAS  Google Scholar 

  • Ding R, Asada H, Obata K (1998) Changes in extracellular glutamate and GABA levels in the hippocampal CA3 and CA1 areas and the induction of glutamic acid decarboxylase-67 in dentate granule cells of rats treated with kainic acid. Brain Res 800:105–113

    Article  PubMed  CAS  Google Scholar 

  • Dudek FE, Hellier JL, Williams PA, Ferraro DJ, Staley KJ (2002) The course of cellular alterations associated with the development of spontaneous seizures after status epilepticus. Prog Brain Res 135:53–65

    Article  PubMed  Google Scholar 

  • During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610

    Article  PubMed  CAS  Google Scholar 

  • Ebisu T, Rooney WD, Graham SH, Weiner MW, Maudsley AA (1994) N-acetylaspartate as an in vivo marker of neuronal viability in kainate-induced status epilepticus: 1H magnetic resonance spectroscopic imaging. J Cereb Blood Flow Metab 14:373–382

    PubMed  CAS  Google Scholar 

  • Ermakova IV, Loseva EV, Hodges H, Sinden J (2005) Transplantation of cultured astrocytes attenuates degenerative changes in rats with kainic acid-induced brain damage. Bull Exp Biol Med 140:677–681

    Article  PubMed  CAS  Google Scholar 

  • Griffin JL, Bollard M, Nicholson JK, Bhakoo K (2002) Spectral profiles of cultured neuronal and glial cells derived from HRMAS 1H NMR spectroscopy. NMR Biomed 15:375–384

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen MB, Finsen BR, Jensen MB, CastellanoB, Diemer NH, Zimmer J (1993) Microglial and astroglial reactions to ischemic and kainic acid-induced lesions of the adult rat hippocampus. Exp Neurol 120:70–88

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Stafstrom CE, Sarkisian MR, Yang Y, Hori A, Tandon P, Holmes GL (1997) Seizure-induced glutamate release in mature and immature animals: an in vivo microdialysis study. Neuroreport 8:2019–2023

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Bisbal MC, Marti-Bonmati L, Piquer J, Revert A, Ferrer P, Llacer JL, Piotto M, Assemat O, Celda B (2004) 1H and 13C HR-MAS spectroscopy of intact biopsy samples ex vivo and in vivo 1H MRS study of human high grade gliomas. NMR Biomed 17:191–205

    Article  PubMed  CAS  Google Scholar 

  • Miller BL (1991) A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline. NMR Biomed 4:47–52

    Article  PubMed  CAS  Google Scholar 

  • Mitchell J, Sundstrom LE, Wheal HV (1993) Microglial and astrocytic cell responses in the rat hippocampus after an intracerebroventricular kainic acid injection. Exp Neurol 121:224–230

    Article  PubMed  CAS  Google Scholar 

  • Morris GA, Freeman R (1978) Selective excitation in Fourier transform nuclear magnetic resonance. J Magn Reson 29: 433–462

    CAS  Google Scholar 

  • Najm IM, Wang Y, Hong SC, Luders HO, Ng TC, Comair YG (1997) Temporal changes in proton MRS metabolites after kainic acid-induced seizures in rat brain. Epilepsia 38:87–94

    Article  PubMed  CAS  Google Scholar 

  • Ross BD, Bluml S, Cowan R, Danielsen E, Farrow N, Gruetter R (1997) In vivo magnetic resonance spectroscopy of human brain: the biophysical basis of dementia. Biophys Chem 68:161–172

    Article  PubMed  CAS  Google Scholar 

  • Ross BD, Bluml S, Cowan R (1998) In vivo MR spectroscopy of human dementia. Neuroimaging Clin N Am 8:809–822

    PubMed  CAS  Google Scholar 

  • Saransaari P, Oja SS (1998) Release of endogenous glutamate, aspartate, GABA, and taurine from hippocampal slices from adult and developing mice under cell-damaging conditions. Neurochem Res 23:563–570

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L (1981) Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J Cereb Blood Flow Metab 1:7–36

    PubMed  CAS  Google Scholar 

  • Sperk G (1994) Kainic acid seizures in the rat. Prog Neurobiol 42:1–32

    Article  PubMed  CAS  Google Scholar 

  • Swanson MG, Vigneron DB, Tabatabai ZL, Males RG, Schmitt L, Carroll PR, James JK, Hurd RE, Kurhanewicz J (2003) Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn Reson Med 50:944–954

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Hirate M, Tamano H, Oku N (2003) Release of glutamate and GABA in the hippocampus under zinc deficiency. J Neurosci Res 72:537–542

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Simon RP (1994) The pattern of neuronal injury following seizures induced by intranigral kainic acid. Neurosci Lett 176:205–208

    Article  PubMed  CAS  Google Scholar 

  • Taniwaki Y, Kato M, Araki T, Kobayashi T (1996) Microglial activation by epileptic activities through the propagation pathway of kainic acid-induced hippocampal seizures in the rat. Neurosci Lett 217:29–32

    Article  PubMed  CAS  Google Scholar 

  • Tong Z, Yamaki T, Harada K, Houkin K (2004) In vivo quantification of the metabolites in normal brain and brain tumors by proton MR spectroscopy using water as an internal standard. Magn Reson Imaging 22:1017–1024

    Article  PubMed  CAS  Google Scholar 

  • Tremblay E, Ottersen OP, Rovira C, Ben-Ari Y (1983) Intra-amygdaloid injections of kainic acid: regional metabolic changes and their relation to the pathological alterations. Neuroscience 8:299–315

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Coyle JT (1995) N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol 46:531–540

    Article  PubMed  CAS  Google Scholar 

  • Tsang TM, Griffin JL, Haselden J, Fish C, Holmes E (2005) Metabolic characterization of distinct neuroanatomical regions in rats by magic angle spinning 1H nuclear magnetic resonance spectroscopy. Magn Reson Med 53:1018–1024

    Article  PubMed  CAS  Google Scholar 

  • Yager JY, Armstrong EA, Miyashita H, Wirrell EC (2002) Prolonged neonatal seizures exacerbate hypoxic-ischemic brain damage: correlation with cerebral energy metabolism and excitatory amino acid release. Dev Neurosci 24:367–381

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, H., Toufexis, D., Wang, X. et al. Changes of metabolite profile in kainic acid induced hippocampal injury in rats measured by HRMAS NMR. Exp Brain Res 183, 477–485 (2007). https://doi.org/10.1007/s00221-007-1061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1061-6

Keywords

Navigation