Skip to main content
Log in

Amino acid transporter (VIAAT, VGLUT2) and chloride cotransporter (KCC1, KCC2 and NKCC1) expression in the vestibular nuclei of intact and labyrinthectomized rat

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We report the first investigation of whether unilateral labyrinthectomy in adult rats affects the expression of two amino acid transporters, vesicular glutamate transporter 2 (VGLUT2) and vesicular inhibitory amino acid transporter (VIAAT) and of chloride cotransporters (KCC1, KCC2 and NKCC1) in the intact and deafferented medial vestibular nuclei (MVN). In situ hybridization with specific radioactive oligonucleotide probes and immunofluorescent methods were used in normal and unilaterally labyrinthectomized rats at various times following the lesion: 5 h, and 1, 3 and 8 days. In normal animals, several brainstem regions including the lateral, medial, superior and inferior vestibular nuclei contained VGLUT2, VIAAT and KCC2 mRNA. In contrast, no or a very faint labeling was observed with KCC1 and NKCC1 probes. In unilaterally lesioned rats, there was no asymmetry between the two MVN with any of the oligonucleotide probes at any time after the lesion. Similarly, there were no differences in the intensity of MVN labeling between controls and lesioned animals. Finally, no over-expression of the cotransporter KCC1 and NKCC1 was found in ipsilateral or controlateral MVN in lesioned rats at any time. Immunohistochemical experiments gave similar conclusions. Our findings suggest that the recovery of the resting discharge of the deafferented MVN neurons, and consequently the functional compensation of the deficits, are not dependent on changes in the expression of amino acid transporters (VIAAT, VGLUT2), and chloride cotransporters (KCC1, KCC2 and NKCC1) or on their mRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barmack NH, Fredette BJ, Mugnaini E (1998) Parasolitary nucleus: a source of GABAergic vestibular information to the inferior olive of rat and rabbit. J Comp Neurol 392:352–372

    Article  PubMed  CAS  Google Scholar 

  • Calza L, Giardino L, Zanni M, Galetti G (1992) Muscarinic and gamma-aminobutyric acid-ergic receptor changes during vestibular compensation. A quantitative autoradiographic study of the vestibular nuclei complex in the rat. Eur Arch Otorhinolaryngol 249:34–39

    Article  PubMed  CAS  Google Scholar 

  • Curthoys IS (2000) Vestibular compensation and substitution. Curr Opin Neurol 13:27–30

    Article  PubMed  CAS  Google Scholar 

  • Danik M, Cassoly E, Manseau F, Sotty F, Mouginot D, Williams S (2005) Frequent coexpression of the vesicular glutamate transporter 1 and 2 genes, as well as coexpression with genes for choline acetyltransferase or glutamic acid decarboxylase in neurons of rat brain. J Neurosci Res 81:506–521

    Article  PubMed  CAS  Google Scholar 

  • de Waele C, Abitbol M, Chat M, Menini C, Mallet J, Vidal PP (1994) Distribution of glutamatergic receptors and GAD mRNA-containing neurons in the vestibular nuclei of normal and hemilabyrinthectomized rats. Eur J Neurosci 6:565–576

    Article  PubMed  Google Scholar 

  • Eleore L, Vassias I, Vidal PP, de Waele C (2004) An in situ hybridization and immunofluorescence study of glycinergic receptors and gephyrin in the vestibular nuclei of the intact and unilaterally labyrinthectomized rat. Exp Brain Res 154:333–344

    Article  PubMed  CAS  Google Scholar 

  • Eleore L, Vassias I, Bernat I, Vidal PP, de Waele C (2005a) An in situ hybridization and immunofluorescence study of GABA(A) and GABA(B) receptors in the vestibular nuclei of the intact and unilaterally labyrinthectomized rat. Exp Brain Res 160:166–179

    Article  PubMed  CAS  Google Scholar 

  • Eleore L, Vassias I, Vidal PP, de Waele C (2005b) Modulation of the glutamatergic receptors (AMPA and NMDA) and of glutamate vesicular transporter 2 in the rat facial nucleus after axotomy. Neuroscience 136:147–160

    Article  PubMed  CAS  Google Scholar 

  • Eleore L, Vassias I, Vidal PP, Triller A, de Waele C (2005c) Modulation of glycine receptor subunits and gephyrin expression in the rat facial nucleus after axotomy. Eur J Neurosci 21:669–678

    Article  PubMed  Google Scholar 

  • Frahm C, Siegel G, Grass S, Witte OW (2006) Stable expression of the vesicular GABA transporter following photothrombotic infarct in rat brain. Neuroscience 140:865–877

    Article  PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH (2004) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 27:98–103

    Article  PubMed  CAS  Google Scholar 

  • Fujiyama F, Hioki H, Tomioka R, Taki K, Tamamaki N, Nomura S, Okamoto K, Kaneko T (2003) Changes of immunocytochemical localization of vesicular glutamate transporters in the rat visual system after the retinofugal denervation. J Comp Neurol 465:234–249

    Article  PubMed  CAS  Google Scholar 

  • Galeffi F, Sah R, Pond BB, George A, Schwartz-Bloom RD (2004) Changes in intracellular chloride after oxygen-glucose deprivation of the adult hippocampal slice: effect of diazepam. J Neurosci 24:4478–4488

    Article  PubMed  CAS  Google Scholar 

  • Gasnier B (2000) The loading of neurotransmitters into synaptic vesicles. Biochimie 82:327–337

    Article  PubMed  CAS  Google Scholar 

  • Gliddon CM, Darlington CL, Smith PF (2005) GABA(A) receptor subunit expression in the guinea pig vestibular nucleus complex during the development of vestibular compensation. Exp Brain Res 166:71–77

    Article  PubMed  CAS  Google Scholar 

  • Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M, Gasnier B, Giros B, El Mestikawy S (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 22:5442–5451

    PubMed  CAS  Google Scholar 

  • Guilding C, Dutia MB (2005) Early and late changes in vestibular neuronal excitability after deafferentation. Neuroreport 16:1415–1418

    Article  PubMed  Google Scholar 

  • Hisano S, Sawada K, Kawano M, Kanemoto M, Xiong G, Mogi K, Sakata-Haga H, Takeda J, Fukui Y, Nogami H (2002) Expression of inorganic phosphate/vesicular glutamate transporters (BNPI/VGLUT1 and DNPI/VGLUT2) in the cerebellum and precerebellar nuclei of the rat. Brain Res Mol Brain Res 107:23–31

    Article  PubMed  CAS  Google Scholar 

  • Horii A, Smith PF, Darlington CL (2001) Quantitative changes in gene expression of glutamate receptor subunits/subtypes in the vestibular nucleus, inferior olive and flocculus before and following unilateral labyrinthectomy in the rat: real-time quantitative PCR method. Exp Brain Res 139:188–200

    Article  PubMed  CAS  Google Scholar 

  • Horii A, Masumura C, Smith PF, Darlington CL, Kitahara T, Uno A, Mitani K, Kubo T (2004) Microarray analysis of gene expression in the rat vestibular nucleus complex following unilateral vestibular deafferentation. J Neurochem 91:975–982

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Toyoda H, Yamada J, Okabe A, Sato K, Hotta Y, Fukuda A (2003) Differential development of cation-chloride cotransporters and Cl- homeostasis contributes to differential GABAergic actions between developing rat visual cortex and dorsal lateral geniculate nucleus. Brain Res 984:149–159

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Yamanaka T, Kita T, Nakashima T, Hosoi H (2003) Glutamate release in the rat medial vestibular nucleus following unilateral labyrinthectomy using in vivo microdialysis. Brain Res 991:78–83

    Article  PubMed  CAS  Google Scholar 

  • Johnston AR, Him A, Dutia MB (2001) Differential regulation of GABA(A) and GABA(B) receptors during vestibular compensation. Neuroreport 12:597–600

    Article  PubMed  CAS  Google Scholar 

  • Johnston AR, Seckl JR, Dutia MB (2002) Role of the flocculus in mediating vestibular nucleus neuron plasticity during vestibular compensation in the rat. J Physiol 545:903–911

    Article  PubMed  CAS  Google Scholar 

  • Kanaka C, Ohno K, Okabe A, Kuriyama K, Itoh T, Fukuda A, Sato K (2001) The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 104:933–946

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Fujiyama F (2002) Complementary distribution of vesicular glutamate transporters in the central nervous system. Neurosci Res 42:243–250

    Article  PubMed  CAS  Google Scholar 

  • King J, Zheng Y, Liu P, Darlington CL, Smith PF (2002) NMDA and AMPA receptor subunit protein expression in the rat vestibular nucleus following unilateral labyrinthectomy. Neuroreport 13:1541–1545

    Article  PubMed  CAS  Google Scholar 

  • Li JL, Fujiyama F, Kaneko T, Mizuno N (2003) Expression of vesicular glutamate transporters, VGluT1 and VGluT2, in axon terminals of nociceptive primary afferent fibers in the superficial layers of the medullary and spinal dorsal horns of the rat. J Comp Neurol 457:236–249

    Article  PubMed  CAS  Google Scholar 

  • Nabekura J, Ueno T, Okabe A, Furuta A, Iwaki T, Shimizu-Okabe C, Fukuda A, Akaike N (2002) Reduction of KCC2 expression and GABAA receptor-mediated excitation after in vivo axonal injury. J Neurosci 22:4412–4417

    PubMed  CAS  Google Scholar 

  • Okabe A, Yokokura M, Toyoda H, Shimizu-Okabe C, Ohno K, Sato K, Fukuda A (2003) Changes in chloride homeostasis-regulating gene expressions in the rat hippocampus following amygdala kindling. Brain Res 990:221–226

    Article  PubMed  CAS  Google Scholar 

  • Oliveira AL, Hydling F, Olsson E, Shi T, Edwards RH, Fujiyama F, Kaneko T, Hokfelt T, Cullheim S, Meister B (2003) Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia. Synapse 50:117–129

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Plotkin MD, Snyder EY, Hebert SC, Delpire E (1997) Expression of the Na-K-2Cl cotransporter is developmentally regulated in postnatal rat brains: a possible mechanism underlying GABA’s excitatory role in immature brain. J Neurobiol 33:781–795

    Article  PubMed  CAS  Google Scholar 

  • Rabbath G, Vassias I, Vidal PP, de Waele C (2002) GluR2-R4 AMPA subunit study in rat vestibular nuclei after unilateral labyrinthectomy: an in situ and immunohistochemical study. Neuroscience 111:189–206

    Article  PubMed  CAS  Google Scholar 

  • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    Article  PubMed  CAS  Google Scholar 

  • Rivera C, Voipio J, Kaila K (2005) Two developmental switches in GABAergic signalling: the K+-Cl cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol 562:27–36

    Article  PubMed  CAS  Google Scholar 

  • Sagne C, El Mestikawy S, Isambert MF, Hamon M, Henry JP, Giros B, Gasnier B (1997) Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases. FEBS Lett 417:177–183

    Article  PubMed  CAS  Google Scholar 

  • Sperk G, Schwarzer C, Heilman J, Furtinger S, Reimer RJ, Edwards RH, Nelson N (2003) Expression of plasma membrane GABA transporters but not of the vesicular GABA transporter in dentate granule cells after kainic acid seizures. Hippocampus 13:806–815

    Article  PubMed  CAS  Google Scholar 

  • Toyoda H, Ohno K, Yamada J, Ikeda M, Okabe A, Sato K, Hashimoto K, Fukuda A (2003) Induction of NMDA and GABAA receptor-mediated Ca2+ oscillations with KCC2 mRNA downregulation in injured facial motoneurons. J Neurophysiol 89:1353–1362

    Article  PubMed  CAS  Google Scholar 

  • Vibert N, Beraneck M, Bantikyan A, Vidal PP (2000) Vestibular compensation modifies the sensitivity of vestibular neurones to inhibitory amino acids. Neuroreport 11:1921–1927

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Ohno K, Furukawa T, Ueki T, Ikeda M, Fukuda A, Sato K (2005) Differential expression of KCC2 accounts for the differential GABA responses between relay and intrinsic neurons in the early postnatal rat olfactory bulb. Eur J Neurosci 21:1449–1455

    Article  PubMed  CAS  Google Scholar 

  • Woo NS, Lu J, England R, McClellan R, Dufour S, Mount DB, Deutch AY, Lovinger DM, Delpire E (2002) Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K-Cl cotransporter gene. Hippocampus 12:258–268

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka T, Him A, Cameron SA, Dutia MB (2000) Rapid compensatory changes in GABA receptor efficacy in rat vestibular neurones after unilateral labyrinthectomy. J Physiol 523:413–424

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Ashton J, Horii A, Darlington CL, Smith PF (2005) Immunocytochemical and stereological analysis of GABA(B) receptor subunit expression in the rat vestibular nucleus following unilateral vestibular deafferentation. Brain Res 1037:107–113

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine de Waele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eleore, L., Ardehali, M., Vassias, I. et al. Amino acid transporter (VIAAT, VGLUT2) and chloride cotransporter (KCC1, KCC2 and NKCC1) expression in the vestibular nuclei of intact and labyrinthectomized rat. Exp Brain Res 182, 449–458 (2007). https://doi.org/10.1007/s00221-007-1006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1006-0

Keywords

Navigation