Skip to main content
Log in

Dynamics of quadrupedal locomotion of monkeys: implications for central control

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We characterized the three-dimensional kinematics and dynamics of quadrupedal gait of young adult rhesus and cynomolgus monkeys while they walked with diagonal and lateral gaits at 0.4–1.0 m/s on a treadmill. Rigid bodies on the wrist, ankle, and back were monitored by an optical motion detection system (Optotrak). Kinematic data could be normalized using characteristic stride length, reducing variance due to different gait styles, to emphasize common characteristics of swing and stance parameters among animals. Mean swing phase durations fell as walking speed increased, but the swing phase durations increased at each walking velocity as a linear function of increases in amplitude, thereby following a main sequence relationship. The phase plane trajectories of the swing phases, i.e., plots of the relation of the rising and falling limb velocity to limb position in the sagittal (XZ) plane, had unique dynamic characteristics. Trajectories were separable at each walking velocity and increases in swing amplitude were linearly related to peak swing velocities, thus comprising main sequences. We infer that the swing phase dynamics are set by central neural mechanisms at the onset of the swing phases according to the intended amplitude, which in turn is based on the walking velocity in the stance phases. From the many dynamic similarities between swing phases and rapid eye movements, we further suggest that the swing phases may be generated by neural mechanisms similar to those that produce saccades and quick phases of nystagmus from a signal related to sensed or desired walking velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aerts P, Van Damme R, Van Elsacker L, Duchene V (2000) Spatio-temporal gait characteristics of the hind-limb cycles during voluntary bipedal and quadrupedal walking in bonobos (Pan paniscus). Am J Phys Anthropol 111:503–517

    Article  PubMed  CAS  Google Scholar 

  • Alexander RM (1989) Optimization and gaits in the locomotion of vertebrates. Physiol Rev 69:1199–1227

    PubMed  CAS  Google Scholar 

  • Alexander RM (2004) Bipedal animals, and their differences from humans. J Anat 204:321–330

    Article  PubMed  Google Scholar 

  • Alexander RM, Jayes AS (1983) A dynamic similarity hypothesis for the gaits of quadrupedal mammals. J Zoology (Lond) 210:135–152

    Google Scholar 

  • Bahill AT, Clark MR, Stark L (1975) The main sequence, a tool for studying human eye movements. Math Biosci 24:191–204

    Article  Google Scholar 

  • Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond Ser B 84:309–319

    Article  Google Scholar 

  • Carlson-Kuhta P, Trank TV, Smith JL (1998) Forms of forward quadrupedal locomotion. II. A comparison of posture, hindlimb kinematics, and motor patterns for upslope and level walking. J Neurophysiol 79:1687–1701

    PubMed  CAS  Google Scholar 

  • Cartmill M, Lemelin P, Schmitt D (2002) Support polygons and symmetrical gaits in mammals. Zool J Linn Soc 136:401–420

    Article  Google Scholar 

  • Chun K-S, Robinson DA (1978) A model of quick phase generation in the vestibuloocular reflex. Biol Cybern 28:209–221

    Article  PubMed  CAS  Google Scholar 

  • Cohen B, Suzuki J, Bender MB (1965) Nystagmus induced by electric stimulation of ampullary nerves. Acta Otolaryngol 60:422–436

    Google Scholar 

  • Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol (Lond) 270:321–344

    CAS  Google Scholar 

  • Courtine G, Roy RR, Hodgson JA, McKay HL, Raven J, Zhong H, Yang H, Tuszynski MH, Edgerton VR (2005a) Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (rhesus). J Neurophysiol 93:3127–3145

    Article  Google Scholar 

  • Courtine G, Roy RR, Raven J, Hodgson J, McKay H, Yang H, Zhong H, Tuszynski MH, Edgerton VR (2005b) Performance of locomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta). Brain 128(Pt 10):2338–2358

    Article  Google Scholar 

  • Cruse H, Warnecke H (1992) Coordination of the legs of a slow-walking cat. Exp Brain Res 89:147–156

    Article  PubMed  CAS  Google Scholar 

  • D’Aout K, Vereecke E, Schoonaert K, De Clercq D, Van Elsacker L, Aerts P (2004) Locomotion in bonobos (Pan paniscus): differences and similarities between bipedal and quadrupedal terrestrial walking, and a comparison with other locomotor modes. J Anat 204:353–361

    Article  PubMed  CAS  Google Scholar 

  • Demes B, Jungers WL, Selpien K (1991) Body size, locomotion, and long bone cross-sectional geometry in indriid primates. Am J Phys Anthropol 86:537–547

    Article  PubMed  CAS  Google Scholar 

  • Demes B, Larson SG, Stern Jr. JT, Jungers WL, Biknevicius AR, Schmitt D (1994) The kinetics of primate quadrupedalism: “hindlimb drive” reconsidered. J Hum Evol 26:353–374

    Article  Google Scholar 

  • Dunbar DC, Badam GL (1998) Development of posture and locomotion in free-ranging primates. Neurosci Biobehav Rev 22:541–546

    Article  PubMed  CAS  Google Scholar 

  • Dunbar DC, Horak FB, Macpherson JM, Rushmer DS (1986) Neural control of quadrupedal and bipedal stance: implications for the evolution of erect posture. Am J Phys Anthropol 69:93–105

    Article  PubMed  CAS  Google Scholar 

  • English AW, Lennard PR (1982) Interlimb coordination during stepping in the cat: in-phase stepping and gait transitions. Brain Res 245:353–364

    Article  PubMed  CAS  Google Scholar 

  • Gorska T, Bem T, Majczynski H, Zmyslowski W (1993a) Unrestrained walking in cats with partial spinal lesions. Brain Res Bull 32:241–249

    Article  CAS  Google Scholar 

  • Gorska T, Bem T, Majczynski H, Zmyslowski W (1993b) Unrestrained walking in intact cats. Brain Res Bull 32:235–240

    Article  CAS  Google Scholar 

  • Griffin TM, Main RP, Farley CT (2004) Biomechanics of quadrupedal walking: how do four-legged animals achieve inverted pendulum-like movements? J Exp Biol 207:3545–3558

    Article  PubMed  Google Scholar 

  • Grillner S (1975) Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 55:247–304

    PubMed  CAS  Google Scholar 

  • Grillner S, Dubuc R (1988) Control of locomotion in vertebrates: spinal and supraspinal mechanisms. Adv Neurol 47:425–453

    PubMed  CAS  Google Scholar 

  • Grillner S, Wallen P (1985) Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci 8:233–261

    Article  PubMed  CAS  Google Scholar 

  • Grillner S, Perret C, Zangger P (1976) Central generation of locomotion in the spinal dogfish. Brain Res 109:255–269

    Article  PubMed  CAS  Google Scholar 

  • Henn V, Cohen B (1972) Eye muscle motor neurons with different functional characteristics. Brain Res 45:561–568

    Article  PubMed  CAS  Google Scholar 

  • Henn V, Cohen B (1973) Quantitative analysis of activity in eye muscle motoneurons during saccadic eye movements and positions of fixation. J Neurophysiol 36:115–126

    PubMed  CAS  Google Scholar 

  • Henn V, Cohen B (1976) Coding of information about rapid eye movements in the pontine reticular formation of alert monkeys. Brain Res 108:307–325

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand M (1967) Symmetrical gaits of primates. Am J Phys Anthropol 26:119–130

    Article  Google Scholar 

  • Hirasaki E, Matano S (1996) Comparison of locomotor patterns and the cerebellar complex in Ateles and Macaca. Folia Primatol (Basel) 66:209–225

    Article  CAS  Google Scholar 

  • Hirasaki E, Moore ST, Raphan T, Cohen B (1999) Effects of walking velocity on vertical head and body movements during locomotion. Exp Brain Res 127:117–130

    Article  PubMed  CAS  Google Scholar 

  • Hirasaki E, Ogihara N, Hamada Y, Kumakura H, Nakatsukasa M (2004) Do highly trained monkeys walk like humans? A kinematic study of bipedal locomotion in bipedally trained Japanese macaques. J Hum Evol 46:739–750

    Article  PubMed  Google Scholar 

  • Howland DR, Bregman BS, Goldberger ME (1995) The development of quadrupedal locomotion in the kitten. Exp Neurol 135:93–107

    Article  PubMed  CAS  Google Scholar 

  • Hoyt DF, Wickler SJ, Cogger EA (2000) Time of contact and step length: the effect of limb length, running speed, load carrying and incline. J Exp Biol 203:221–227

    PubMed  CAS  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282

    Article  PubMed  CAS  Google Scholar 

  • Ivanenko YP, Dominici N, Cappellini G, Lacquaniti F (2005) Kinematics in newly walking toddlers does not depend upon postural stability. J Neurophysiol 94:754–763

    Article  PubMed  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2006) Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds. J Neurophysiol 95:602–618

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E, Edgley S (1993) Interaction between pathways controlling posture and gait at the level of the spinal interneurones in the cat. Prog Brain Res 97:161–171

    PubMed  CAS  Google Scholar 

  • Judge SJ, Richmond BJ, Chu FC (1980) Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res 20:535–538

    Article  PubMed  CAS  Google Scholar 

  • Kimura T (1985) Bipedal and quadrupedal walking of primates: comparative dynamics. In: Kondo S (ed) Primate morphophysiology, locomotor analyses and human bipedalism. Tokyo University Press, Tokyo, pp 81–104

    Google Scholar 

  • Korvick DL, Pijanowski GJ, Schaeffer DJ (1994) Three-dimensional kinematics of the intact and cranial cruciate ligament-deficient stifle of dogs. J Biomech 27:77–87

    Article  PubMed  CAS  Google Scholar 

  • Kunin M (2005) Computational approach for modeling body and head movements during locomotion. In: Computer Science. Graduate School and University Center of CUNY, New York, pp 173

  • Kushiro K, Dai M, Kunin M, Yakushin SB, Cohen B, Raphan T (2002) Compensatory and orienting eye movements induced by off-vertical axis rotation (OVAR) in monkeys. J Neurophysiol 88:2445–2462

    Article  PubMed  Google Scholar 

  • Larney E, Larson SG (2004) Compliant walking in primates: elbow and knee yield in primates compared to other mammals. Am J Phys Anthropol 125:42–50

    Article  PubMed  Google Scholar 

  • Larson SG, Schmitt D, Lemelin P, Hamrick M (2000) Uniqueness of primate forelimb posture during quadrupedal locomotion. Am J Phys Anthropol 112:87–101

    Article  PubMed  CAS  Google Scholar 

  • Larson SG, Schmitt D, Lemelin P, Hamrick M (2001) Limb excursion during quadrupedal walking: how do primates compare to other mammals? J. Zool Lond 255:353–365

    Article  Google Scholar 

  • Miller S, Scott PD (1977) The spinal locomotor generator. Exp Brain Res 30:387–403

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Miyashita E, Nakajima K, Asanome M (1996) Quadrupedal locomotor movements in monkeys (M. Fuscata) on a treadmill: kinematic analyses. Neuroreport 7:2277–2285

    Article  PubMed  CAS  Google Scholar 

  • Mori F, Tachibana A, Takasu C, Nakajima K, Mori S (2001) Bipedal locomotion by the normally quadrupedal Japanese monkey, M. Fuscata: strategies for obstacle clearance and recovery from stumbling. Acta Physiol Pharmacol Bulg 26:147–150

    PubMed  CAS  Google Scholar 

  • Muybridge E (1887) Animals in motion. Chapman and Hall, London

    Google Scholar 

  • Nakajima K, Mori F, Takasu C, Mori M, Matsuyama K, Mori S (2004) Biomechanical constraints in hindlimb joints during the quadrupedal versus bipedal locomotion of M. fuscata. Prog Brain Res 143:183–190

    Article  PubMed  Google Scholar 

  • Orlovsky GN, Feldman AG (1972) Classification of lumbosacral neurons according to their discharge patterns during evoked locomotion (in Russian). Neurophysiology 4:410–417

    Google Scholar 

  • Orlovsky GN, Deliagina TG, Grillner S (1999) Neuronal control of locomotion, from mollusc to man. Oxford University Press, New York

    Google Scholar 

  • Osaki Y, Kunin M, Cohen B, Raphan T (2006a) Three-dimensional kinematics and dynamics of the foot during walking. Exp Brain Res. DOI 10.1007/s00221-006-0633-1

  • Osaki Y, Kunin M, Cohen B, Raphan T (2006b) Kinematics and dynamics of leg movement during treadmill walking in humans. In: ARO, 29th Midwinter meeting, Baltimore, vol 193, p 65

  • Patla AE, Calvert TW, Stein RB (1985) Model of a pattern generator for locomotion in mammals. Am J Physiol 248:R484–R494

    PubMed  CAS  Google Scholar 

  • Pearson K, Gordon J (2000) Locomotion. In: Kandel ER, Schwartz JH, Jessell TM (eds) Chapter 37 in principles of neural science. McGraw-Hill, New York, pp 737–755

    Google Scholar 

  • Perret C, Cabelguen JM (1976) Central and reflex participation in the timing of locomotor activations of a bifunctional muscle, the semi-tendinosus, in the cat. Brain Res 106:390–395

    Article  PubMed  CAS  Google Scholar 

  • Polk JD (2002) Adaptive and phylogenetic influences on musculoskeletal design in cercopithecine primates. J Exp Biol 205:3399–3412

    PubMed  CAS  Google Scholar 

  • Polk JD (2004) Influences of limb proportions and body size on locomotor kinematics in terrestrial primates and fossil hominins. J Hum Evol 47:237–252

    Article  PubMed  CAS  Google Scholar 

  • Polk JD, Demes B, Jungers WL, Biknevicius AR, Heinrich RE, Runestad JA (2000) A comparison of primate, carnivoran and rodent limb bone cross-sectional properties: are primates really unique? J Hum Evol 39:297–325

    Article  PubMed  CAS  Google Scholar 

  • Preuschoft H (2004) Mechanisms for the acquisition of habitual bipedality: are there biomechanical reasons for the acquisition of upright bipedal posture? J Anat 204:363–384

    Article  PubMed  Google Scholar 

  • Raphan T (1976) A parameter adaptive approach to oculomotor system modeling. In: PhD Thesis, Electrical Engineering. The City University of New York, New York, pp 204

  • Raphan T, Cohen B (1981) The role of integration in oculomotor control. In: Zuber BL (ed) Models of oculomotor behavior and control. CRC Press, Boca Raton, pp 91–109

    Google Scholar 

  • Raphan T, Cohen B (1996) How does the vestibulo-ocular reflex work? In: Baloh RW, Halmagyi GM (eds) Disorders of the vestibular system. Oxford University Press, New York, pp 20–47

    Google Scholar 

  • Raphan T, Cohen B (2002) The vestibulo-ocular reflex (VOR) in three dimensions. Exp Brain Res 145:1–27

    Article  PubMed  Google Scholar 

  • Raphan T, Matsuo V, Cohen B (1977) A velocity storage mechanism responsible for optokinetic nystagmus (OKN), optokinetic after-nystagmus (OKAN) and vestibular nystagmus. In: Baker R, Berthoz A (eds) In control of gaze by brain stem neurons. Elsevier/North Holland, Amsterdam, pp 37–47

    Google Scholar 

  • Raphan T, Matsuo V, Cohen B (1979) Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res 35:229–248

    Article  PubMed  CAS  Google Scholar 

  • Reynolds TR (1985a) Mechanics of increased support of weight by the hindlimbs in primates. Am J Phys Anthropol 67:335–349

    Article  CAS  Google Scholar 

  • Reynolds TR (1985b) Stresses on the limbs of quadrupedal primates. Am J Phys Anthropol 67:351–362

    Article  CAS  Google Scholar 

  • Robinson DA (1963) A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans Biomed Eng 10:137–145

    PubMed  CAS  Google Scholar 

  • Robinson DA (1971) Models of oculomotor neural organization. In: Bach-y-Rita P, Collins CC (eds) The control of eye movements. Academic, New York, pp 519–538

    Google Scholar 

  • Robinson DA (1976) Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol 39:954–969

    PubMed  CAS  Google Scholar 

  • Robinson D (1977) Vestibular and optokinetic symbiosis: an example of explaining by modeling. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Elsevier/North Holland, Amsterdam, pp 49–58

    Google Scholar 

  • Schmidt M (2005) Quadrupedal locomotion in squirrel monkeys (Cebidae: Saimiri sciureus): a cineradiographic study of limb kinematics and related substrate reaction forces. Am J Phys Anthropol 128(2):359–370

    Article  PubMed  Google Scholar 

  • Schmitt D (1999) Compliant walking in primates. J Zool Lond 248:149–160

    Google Scholar 

  • Schmitt D (2003) Insights into the evolution of human bipedalism from experimental studies of humans and other primates. J Exp Biol 206:1437–1448

    Article  PubMed  Google Scholar 

  • Shapiro LJ, Raichlen DA (2005) Lateral sequence walking in infant Papio cynocephalus: implications for the evolution of diagonal sequence walking in primates. Am J Phys Anthropol 126:205–213

    Article  PubMed  Google Scholar 

  • Shik ML, Orlovsky GN (1976) Neurophysiology of locomotor automatism. Physiol Rev 56:465–501

    PubMed  CAS  Google Scholar 

  • Shik ML, Severin FV, Orlovskii GN (1966) Control of walking and running by means of electric stimulation of the midbrain. Biofizika 11:659–666

    PubMed  CAS  Google Scholar 

  • Smith JL, Carlson-Kuhta P, Trank TV (1998) Forms of forward quadrupedal locomotion. III. A comparison of posture, hindlimb kinematics, and motor patterns for downslope and level walking. J Neurophysiol 79:1702–1716

    PubMed  CAS  Google Scholar 

  • Solomon D, Cohen B (1992a) Stabilization of gaze during circular locomotion in darkness; II. Contribution of velocity storage to compensatory eye and head nystagmus in the running monkey. J Neurophysiol 67:1158–1170

    CAS  Google Scholar 

  • Solomon D, Cohen B (1992b) Stabilization of gaze during circular locomotion in light; I. Compensatory head and eye nystagmus in the running monkey. J Neurophysiol 67:1146–1157

    CAS  Google Scholar 

  • Stark L (1971) The control system for versional eye movements. In: Bach-y-Rita P, Collins CC, Hide JE (eds) The control of eye movements. Academic, New York, pp 363–428

    Google Scholar 

  • Stein PS (1978) Motor systems, with specific reference to the control of locomotion. Annu Rev Neurosci 1:61–81

    Article  PubMed  CAS  Google Scholar 

  • Vilensky JA (1987) Locomotor behavior and control in human and non-human primates: comparisons with cats and dogs. Neurosci Biobehav Rev 11:263–274

    Article  PubMed  CAS  Google Scholar 

  • Vilensky JA, Larson SG (1989) Primate locomotion: utilization and control of symmetrical gaits. Annu Rev Anthropol 18:17–35

    Article  Google Scholar 

  • Vilensky JA, O’Connor BL (1998) Stepping in nonhuman primates with a complete spinal cord transection: old and new data, and implications for humans. Ann N Y Acad Sci 860:528–530

    Article  PubMed  CAS  Google Scholar 

  • Wagenaar RC, Beek WJ (1992) Hemiplegic gait: a kinematic analysis using walking speed as a basis. J Biomech 25:1007–1015

    Article  PubMed  CAS  Google Scholar 

  • Wetzel MC, Stuart DG (1976) Ensemble characteristics of cat locomotion and its neural control. Prog Neurobiol 7:1–98

    Article  PubMed  CAS  Google Scholar 

  • Whelan PJ (1996) Control of locomotion in the decerebrate cat. Prog Neurobiology 49:481–515

    Article  CAS  Google Scholar 

  • Wickler SJ, Hoyt DF, Cogger EA, Hirschbein MH (2000) Preferred speed and cost of transport: the effect of incline. J Exp Biol 203:2195–2200

    PubMed  CAS  Google Scholar 

  • Yakushin S, Dai M, Suzuki J, Raphan T, Cohen B (1995) Semicircular canal contributions to the three-dimensional vestibuloocular reflex: a model-based approach. J Neurophysiol 74:2722–2738

    PubMed  CAS  Google Scholar 

  • Yakushin SB, Reisine H, Buttner-Ennever J, Raphan T, Cohen B (2000) Functions of the nucleus of the optic tract (NOT). I. Adaptation of the gain of the horizontal vestibulo-ocular reflex. Exp Brain Res 131:416–432

    Article  PubMed  CAS  Google Scholar 

  • Yakushin SB, Raphan T, Cohen B (2003) Gravity-specific adaptation of the angular vestibuloocular reflex: dependence on head orientation with regard to gravity. J Neurophysiol 89:571–586

    Article  PubMed  Google Scholar 

  • Zatsiorky VM, Werner SL, Kaimin MA (1994) Basic kinematics of walking. Step length and step frequency. A review. J Sports Med Phys Fitness 34:109–134

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Elena Bodin-Ladnaya for designing and constructing the running suits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Cohen.

Additional information

Grants: This work was supported by National Institute of Health Grants EY11812, EY04148, DC05204, and EY01867.

Appendix

Appendix

Kinematic data were normalized relative to the average stride length (characteristic length). This characteristic length was denoted as L c , the stride frequency as F stride, and the swing and stance durations as T swing and T stance, respectively. From this, with the acceleration of gravity g, the normalized stride length \( L^{n}_{{{\text{stride}}}} \), stride frequency \( F^{n}_{{{\text{stride}}}} \), and swing/stance durations ( \( T^{n}_{{{\text{swing}}}} \) and \( T^{n}_{{{\text{stance}}}} \)) were represented as

$$ L^{n}_{{{\text{stride}}}} = \frac{{L_{{{\text{stride}}}} }} {{L_{c} }} $$
(1)
$$ F^{n}_{{{\text{stride}}}} = F_{{{\text{stride}}}} \cdot {\sqrt {\frac{{L_{c} }} {g}} } $$
(2)
$$ T^{n}_{{{\text{swing}}}} = T_{{{\text{swing}}}} \cdot {\sqrt {\frac{g} {{L_{c} }}} } $$
(3)
$$ T^{n}_{{{\text{stance}}}} = T_{{{\text{stance}}}} \cdot {\sqrt {\frac{g} {{L_{c} }}} } $$
(4)

Similarly the original walking speed, V, was converted into a normalized walking speed V n and represented as

$$ V^{n} = \frac{V} {{{\sqrt {g \cdot L_{c} } }}} $$
(5)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Y., John, P., Yakushin, S.B. et al. Dynamics of quadrupedal locomotion of monkeys: implications for central control. Exp Brain Res 177, 551–572 (2007). https://doi.org/10.1007/s00221-006-0707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0707-0

Keywords

Navigation