Skip to main content
Log in

The coalition of constraints during coordination of the ipsilateral and heterolateral limbs

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Previous work on the coordination between the upper and lower limbs has invariably shown that its accuracy/stability is primarily determined by the mutual direction between limbs in extrinsic space and not by muscle relationships. Here we show that muscle grouping does play a critical role in coordination of the arm and leg, in addition to direction. More specifically, the simultaneous activation of isofunctional muscles and/or limb movements proceeding in the same direction, results in more successful performance than the alternated activation of isofunctional muscles and/or movements occurring in different directions. In the absence of isofunctional muscle coupling, the mutual direction between the limbs plays a more prominent role in determining coordinative accuracy. These coordination constraints can largely account for the observed differences between ipsilateral and heterolateral limb coordination. The findings are discussed in view of the coalition of coordination constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baldissera F, Borroni P, Cavallari P (2000) Neural compensation for mechanical differences between hand and foot during coupled oscillations of the two segments. Exp Brain Res 133:165–177

    Article  PubMed  CAS  Google Scholar 

  • Baldissera F, Cavallari P (2001) Neural compensation for mechanical loading of the hand during coupled oscillations of the hand and foot. Exp Brain Res 139:18–29

    Article  PubMed  CAS  Google Scholar 

  • Baldissera F, Cavallari P, Civaschi P (1982) Preferential coupling between voluntary movements of ipsilateral limbs. Neurosci Lett 34:95–100

    Article  PubMed  CAS  Google Scholar 

  • Baldissera F, Cavallari P, Marini G, Tassone G (1991) Differential control of in-phase and anti-phase coupling of rhythmic movements of ipsilateral hand and foot. Exp Brain Res 83:375–380

    Article  PubMed  CAS  Google Scholar 

  • Byblow WD, Summers JJ, Semjen A, Wuyts IJ, Carson RG (1999) Spontaneous and intentional pattern switching in a multisegmental bimanual coordination task. Motor Control 3:372–393

    PubMed  CAS  Google Scholar 

  • Caminiti R, Johnson PB, Galli C, Ferraina S, Burnod Y (1991) Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets. J Neurosci 11:1182–1197

    PubMed  CAS  Google Scholar 

  • Carson RG, Goodman D, Kelso JA, Elliott D (1995) Phase transitions and critical fluctuations in rhythmic coordination of ipsilateral hand and foot. J Mot Behav 27:211–224

    Article  PubMed  Google Scholar 

  • Carson RG, Thomas J, Summers JJ, Walters MR, Semjen A (1997) The dynamics of bimanual circle drawing. Q J Exp Psychol A 50:664–683

    Article  PubMed  CAS  Google Scholar 

  • Debaere F, Swinnen SP, Beatse E, Sunaert S, Van Hecke P, Duysens J (2001) Brain areas involved in interlimb coordination: a distributed network. Neuroimage 14:947–958

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos AP (1995) Current issues in directional motor control. Trends Neurosci 18:506–510

    Article  PubMed  CAS  Google Scholar 

  • Gould HJ III, Cusick CG, Pons TP, Kaas JH (1986) The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys. J Comp Neurol 247:297–325

    Article  PubMed  Google Scholar 

  • Haken H, Kelso JA, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51:347–356

    Article  PubMed  CAS  Google Scholar 

  • Ivry R, Diedrichsen J, Spencer R, Hazeltine E, Semjen A (2004) A cognitive neuroscience perspective on bimanual coordination and interference. In: Swinnen SP, Duysens J (eds) Neuro-behavioral determinants of interlimb coordination : a multidisciplinary approach. Kluwer, Dordrecht, pp 259–295

    Google Scholar 

  • Jenny AB (1979) Commissural projections of the cortical hand motor area in monkeys. J Comp Neurol 188:137–145

    Article  PubMed  CAS  Google Scholar 

  • Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement representations in the primary motor cortex. Science 285:2136–2139

    Article  PubMed  CAS  Google Scholar 

  • Kakei S, Hoffman DS, Strick PL (2003) Sensorimotor transformations in cortical motor areas. Neurosci Res 46:1–10

    Article  PubMed  Google Scholar 

  • Kelso JA, Fink PW, DeLaplain CR, Carson RG (2001) Haptic information stabilizes and destabilizes coordination dynamics. Proc R Soc Lond B Biol Sci 268:1207–1213

    Article  CAS  Google Scholar 

  • Kelso JA, Jeka JJ (1992) Symmetry breaking dynamics of human multilimb coordination. J Exp Psychol Hum Percept Perform 18:645–668

    Article  PubMed  CAS  Google Scholar 

  • Kinsbourne M, Hicks RE (1978) Mapping cerebral functional space : competition and collaboration in human performance. In: Kinsbourne M (ed) Assymmetrical function of the brain. Cambridge University Press, New York, pp 267–273

    Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Pandya DN, Vignolo LA (1971) Intra-and interhemispheric projections of the precentral, premotor and arcuate areas in the rhesus monkey. Brain Res 26:217–233

    PubMed  CAS  Google Scholar 

  • Rouiller EM, Babalian A, Kazennikov O, Moret V, Yu XH, Wiesendanger M (1994) Transcallosal connections of the distal forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys. Exp Brain Res 102:227–243

    Article  PubMed  CAS  Google Scholar 

  • Scott SH, Kalaska JF (1995) Changes in motor cortex activity during reaching movements with similar hand paths but different arm postures. J Neurophysiol 73:2563–2567

    PubMed  CAS  Google Scholar 

  • Semjen A, Summers JJ, Cattaert D (1995) Hand coordination in bimanual circle drawing. J Exp Psychol-Hum Percept and Perform 21:1139–1157

    Article  Google Scholar 

  • Serrien DJ, Swinnen SP (1997) Isofrequency and multifrequency coordination patterns as a function of the planes of motion. Q J Exp Psychol Sect A-Hum Exp Psychol 50:386–404

    Google Scholar 

  • Spijkers W, Heuer H (2004) Behavioral principles of interlimb coordination. In: Swinnen SP, Duysens J (eds) Neuro-behavioral determinants of interlimb coordination : a multidisciplinary approach. Kluwer, Dordrecht, pp 223–258

    Google Scholar 

  • Swinnen SP (2002) Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev Neurosci 3:348–359

    Article  PubMed  CAS  Google Scholar 

  • Swinnen SP, Dounskaia N, Duysens J (2002) Patterns of bimanual interference reveal movement encoding within a radial egocentric reference frame. J Cogn Neurosci 14:463–471

    Article  PubMed  Google Scholar 

  • Swinnen SP, Dounskaia N, Verschueren S, Serrien DJ, Daelman A (1995) Relative phase destabilization during interlimb coordination: the disruptive role of kinesthetic afferences induced by passive movement. Exp Brain Res 105:439–454

    PubMed  CAS  Google Scholar 

  • Swinnen SP, Jardin K, Meulenbroek R, Dounskaia N, HofkensVanDenBrandt M (1997) Egocentric and allocentric constraints in the expression of patterns of interlimb coordination. J Cogn Neurosci 9:348–377

    Article  Google Scholar 

  • Swinnen SP, Jardin K, Verschueren S, Meulenbroek R, Franz L, Dounskaia N, Walter CB (1998) Exploring interlimb constraints during bimanual graphic performance: effects of muscle grouping and direction. Behav Brain Res 90:79–87

    Article  PubMed  CAS  Google Scholar 

  • Temprado JJ, Swinnen SP, Carson RG, Tourment A, Laurent M (2003) Interaction of directional, neuromuscular and egocentric constraints on the stability of preferred bimanual coordination patterns. Hum Mov Sci 22:339–363

    Article  PubMed  CAS  Google Scholar 

  • Temprado JJ, Zanone PG, Monne A, Laurent M (1999) Attentional load associated with performing and stabilizing preferred bimanual patterns. J Exp Psychol Hum Percept Perform 25:1579–1594

    Article  Google Scholar 

  • Wannier T, Bastiaanse C, Colombo G, Dietz V (2001) Arm to leg coordination in humans during walking, creeping and swimming activities. Exp Brain Res 141:375–379

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support for the present study was provided through a grant from the Research Council of K.U. Leuven (Contract No. OT/03/61) and the Research Programme of the Fund for Scientific Research—Flanders (G.0460.04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. J. Meesen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meesen, R.L.J., Wenderoth, N., Temprado, J.J. et al. The coalition of constraints during coordination of the ipsilateral and heterolateral limbs. Exp Brain Res 174, 367–375 (2006). https://doi.org/10.1007/s00221-006-0471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0471-1

Keywords

Navigation