Skip to main content

Advertisement

Log in

Activation of NF-κB in the mouse spinal cord following sciatic nerve transection

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

NF-κB is a ubiquitous nuclear transcription factor that regulates a number of physiological processes. NF-κB activity has been implicated in enhancing neuronal survival following CNS injury. The present study was conducted to test the hypothesis that NF-κB activity is up-regulated in neurons of the spinal cord in response to peripheral nerve transection. In this series of experiments, we used NF-κB reporter mice in which activation of NF-κB drives the expression of the lac-z gene. The response to injury of cells in the spinal cord was assessed by evaluating the number and distribution of β-galalactosidase (β-gal)-positive cells following sciatic nerve transection. The animals were randomly assigned to four groups, which were allowed to survive for one, three, five and ten days. Four mice that did not undergo sciatic nerve transection were assigned to each group to serve as controls. The total number of β-gal-positive cells in the right and left dorsal and ventral horns were compared. The numbers of β-gal-positive cells between the right and left sides were significantly different three and five days post axotomy (p<0.05). Double immunofluorescent labeling was utilized to characterize which cells showed NF-κB activity, and it revealed that all β-gal-positive cells were colocalized with MAP-2-positive neurons. The results of this study demonstrated that complete sciatic nerve transection leads to an up-regulation of NF-κB transactivation in spinal neurons ipsilateral to the side of transection. The increase in activity in the ipsilateral dorsal horn is consistent with this transcription factor acting as neuronal survival signal during this time frame in response to the peripheral nerve insult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f
Fig. 2
Fig. 3
Fig. 4a–l

Similar content being viewed by others

References

  • Arvidsson J, Ygge J, Grant G (1986) Cell loss in lumbar dorsal root ganglia and transganglionic degeneration after sciatic nerve resection in the rat. Brain Res 373:15–21

    Article  CAS  PubMed  Google Scholar 

  • Baeuerle P, Henkel T (1994) Function and activation of NF-κB in the immune system. Annu Rev Immunol 12:141–179

    CAS  PubMed  Google Scholar 

  • Beg A, Baltimore D (1996) An essential role for NF-κB in preventing TNF-α-induced cell death. Science 274:782–784

    Article  CAS  PubMed  Google Scholar 

  • Beg A, Ruben M, Scheinman R, Haskill S, Rosen C, Baldwin A (1992) IκB interacts with the nuclear localization sequences of the subunits of NF-κB: a mechanism for cytoplasmic retention. Genes Dev 6:1899–1913

    CAS  PubMed  Google Scholar 

  • Bethea J, Castro M, Keane R, Lee T, Dietrich WD, Yezierski R (1998) Traumatic spinal cord injury induces nuclear factor-κB activation. J Neurosci 18:3251–3260

    CAS  PubMed  Google Scholar 

  • Bhakar A, Tannis L, Zeindler C, Russo M, Jobin C, Park D, Macpherson S, Barker P (2002) Constitutive nuclear factor-κB activity is required for central neuron survival. J Neurosci 22:8466–8475

    CAS  PubMed  Google Scholar 

  • Chiarugi A (2002) Characterization of the molecular events following impairment of NF-κB-driven transcription in neurons. Mol Brain Res 109:179–188

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Kim J, Kim D, Chun M, Gwag B, Yoon S, Joo C (2000) Failure to activate NF-κB promotes apoptosis of retinal ganglion cells following optic nerve transection. Brain Res 883:60–68

    Article  CAS  PubMed  Google Scholar 

  • Camandola S, Mattson M (2000) Pro-apoptotic action of par-4 involves inhibition of NF-κB activity and suppression of Bcl-2 expression. J Neurosci Res 61:134–139

    Article  CAS  PubMed  Google Scholar 

  • De Moissac D, Mustapha S, Greenberg A, Kirshenbaum L (1998) Bcl-2 activates the transcription factor NF-κB through degradation of the cytoplasmic inhibitor IκBα. J Biol Chem 273:23946–23951

    Article  PubMed  Google Scholar 

  • Deveraux Q, Reed J (1999) IAP family proteins—suppressors of apoptosis. Genes Dev 13:239–252

    CAS  PubMed  Google Scholar 

  • Doyle C, Hunt S (1997) Reduced nuclear factor κB (p65) expression in rat primary sensory neurons after peripheral nerve injury. Neuroreport 8:2937–2942

    CAS  PubMed  Google Scholar 

  • Fridmacher V, Kaltschmidt B, Goudeau B, Ndiaye D, Mattia Rossi F, Pfeiffer J, Kaltschmidt C, Israël, Mémet S (2003) Forebrain-specific neuronal inhibition of nuclear factor-κB activity leads to loss of neuroprotection. J Neurosci 23:9403–9408

    CAS  PubMed  Google Scholar 

  • Ganchi P, Sun S, Greene W, Ballard D (1992) IκB/MAD-3 masks the nuclear localization signal of NF-κB p65 and requires the transactivation domain to inhibit NF-κB p65 DNA binding. Mol Biol Cell 3:1339–1352

    CAS  PubMed  Google Scholar 

  • Gilmore S, Kane C (1998) Microglia, but not astrocytes, react to sciatic nerve injury in aging rats. Brain Res 806(1):113–116

    Article  CAS  PubMed  Google Scholar 

  • He B, Tay S, Leong S (1997) Microglia responses in the CNS following sciatic nerve transection in C57BL/Wlds and BALB/c mice. Exp Neurol 146:587–595

    Article  CAS  PubMed  Google Scholar 

  • Kaltschmidt B, Kaltschmidt C (2000) Constitutive NF-κB activity is modulated via neuron-astroglia interaction. Exp Brain Res 130:100–104

    Article  CAS  PubMed  Google Scholar 

  • Kaltschmidt C, Kaltschmidt B, Lannes-Vieira J, Kreutzberg G, Wekerle H, Baeuerle P, Gehrmann J (1994) Transcription factor NF-κB is activated in microglia during experimental autoimmune encephalomyelitis. J Neuroimmunol 55:99–106

    Article  CAS  PubMed  Google Scholar 

  • Kaltschmidt C, Kaltschmidt B, Neumann H, Wekerle H, Baeuerle P (1994) Constitutive NF-κB activity in neurons. Mol Cell Biol 14:3981–3992

    CAS  PubMed  Google Scholar 

  • Kashihara Y, Kuno M, Miyata Y (1987) Cell death of axotomized motoneurons in neonatal rats, and its prevention by peripheral reinnervation. J Physiol 386:135–148

    CAS  PubMed  Google Scholar 

  • Kassed C, Butler T, Patton G, Demesquita D, Navidomskis M, Memet S, Israel A, Pennypacker K (2004) Injury-induced NF-kappaB activation in the hippocampus: implications for neuronal survival. FASEB J 18:723–724

    CAS  PubMed  Google Scholar 

  • Kassed C, Willing A, Garbouza-Davis S, Sanberg P, Pennypacker K (2002) Lack of NF-kappaB p50 exacerbates degeneration of hippocampal neurons after chemical exposure and impairs learning. Exp Neurol 176:277–288

    Article  CAS  PubMed  Google Scholar 

  • Koulich E, Nguyen T, Johnson K, Giardina C, D’Mello S (2001) NF-κB is involved in the survival of cerebellar granule neurons: association of IκB phosphorylation with cell survival. J Neurochem 76:1188–1198

    Article  CAS  PubMed  Google Scholar 

  • Kovács A, Chakraborty-Sett S, Ramirez S, Sniderhan L, Williamson A, Maggirwar S (2004) Mechanism of NF-κB inactivation induced by survival signal withdrawal in cerebellar granule neurons. Eur J Neurosci 20:345–352

    Article  PubMed  Google Scholar 

  • Li L, Houenou LJ, Wu W, Lei M, Prevette D, Oppenheim R (1998) Characterization of spinal motoneuron degeneration following different types of peripheral nerve injury in neonatal and adult mice. J Comp Neurol 396:158–168

    Article  CAS  PubMed  Google Scholar 

  • Li L, Oppenheim R, Lei M, Houenou LJ (1994) Neurotrophic agents prevent motoneuron death following sciatic nerve section in the neonatal mouse. J Neurobiol 25:759–766

    Article  CAS  PubMed  Google Scholar 

  • Libermann T, Baltimore D (1990) Activation of interleukin-6 gene expression through the NF-κB transcription factor. Mol Cell Biol 10:2327–2334

    CAS  PubMed  Google Scholar 

  • Liu L, Persson J, Svensson M, Aldskogius H (1998) Glial cell responses, complement, and clusterin in the central nervous system following dorsal root transection. Glia 23:231–238

    Article  Google Scholar 

  • Liu L, Rudin M, Kozlova E (2000) Glial cell proliferation in the spinal cord after dorsal rhizotomy or sciatic nerve transection in the adult rat. Exp Brain Res 131:64–73

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Bisby M (1998) Increased activation of nuclear factor kappa B in rat lumbar dorsal root ganglion neurons following partial sciatic nerve injuries. Brain Res 797:243–254

    Article  CAS  PubMed  Google Scholar 

  • Makarov S (2000) NF-κB as a therapeutic target in chronic inflammation: recent advances. Mol Med Today 6:441–448

    Article  CAS  PubMed  Google Scholar 

  • Mattson M, Culmsee C, Yu Z, Camandola S (2000) Roles of nuclear factor κB in neuronal survival and plasticity. J Neurochem 74:443–456

    Article  CAS  PubMed  Google Scholar 

  • Mattson M, Goodman Y, Luo H, Fu W, Furukawa K (1997) Activation of NF-κB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J Neurosci Res 49:681–697

    Article  CAS  PubMed  Google Scholar 

  • Noven SV, Wallace N, Muccio D, Turtz A, Pinter MJ (1993) Adult spinal motoneurons remain viable despite prolonged absence of functional synaptic contact with muscle. Exp Neurol 123:147–156

    Article  PubMed  Google Scholar 

  • Oliveira A, Risling M, Deckner M, Lindholm T, Langone F, Cullheim S (1997) Neonatal sciatic nerve transaction induces TUNEL labeling of neurons in the rat spinal cord and DRG. Neuroreport 8:2837–40

    CAS  PubMed  Google Scholar 

  • O’Neill L, Kaltschmidt C (1997) NF-κB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20:252–258

    Article  PubMed  Google Scholar 

  • Pahl H (1999) Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18:6853–6866

    Article  CAS  PubMed  Google Scholar 

  • Pennypacker K, Kassed C, Eidizadeh S, Saporta S, Sanberg P, Willing A (2001) NF-κB p50 is increased in neurons surviving hippocampal injury. Exp Neurol 172:307–319

    Article  CAS  PubMed  Google Scholar 

  • Pollin MM, McHanwell S, Slater CR (1991) The effect of age on motor neurone death following axotomy in the mouse. Development 112:83–89

    CAS  PubMed  Google Scholar 

  • Schmidt-Ullrich R, Mémet S, Lilienbaum A, Feuillard J, Raphael M, Israël A (1996) NF-kappa B activity in transgenic mice: developmental regulation and tissue specificity. Development 122:2117–2128

    CAS  PubMed  Google Scholar 

  • Sen R, Baltimore D (1986a) Inducibility of kappa immunoglobulin enhancer-binding protein NF-kappa B by a posttranslational mechanism. Cell 47:921–928

    Article  CAS  PubMed  Google Scholar 

  • Sen R, Baltimore D (1986b) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto T, Bennett G, Kajander K (1990) Transsynaptic degeneration in the superficial dorsal horn after sciatic nerve injury: effects of a chronic constriction injury, transection, and strychnine. Pain 42:205–213

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Ganchi P, Ballard D, Greene W (1993) NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Science 259:1912–1915

    CAS  PubMed  Google Scholar 

  • Tamatani M, Mitsuda N, Matsuzaki H, Okado H, Miyake S, Vitek M, Yamaguchi A, Tohyama M (2000) A pathway of neuronal apoptosis induced by hypoxia/reoxygenation: roles of nuclear factor-kappaB and Bcl-2. J Neurochem 75:683–693

    Article  CAS  PubMed  Google Scholar 

  • Van Antwerp D, Martin S, Kafri T, Green D, Verma I (1996) Suppression of TNF-α-induced apoptosis by NF-κB. Science 274:787–789

    CAS  PubMed  Google Scholar 

  • Verma I, Stevenson J, Schwartz E, Van Antwerp D, Miyamoto S (1995) Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev 9:2723–2735

    CAS  PubMed  Google Scholar 

  • Wang C, Guttridge D, Mayo M, Baldwin A (1999) NF-κB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 19:5923–5929

    CAS  PubMed  Google Scholar 

  • Wang C, Mayo M, Baldwin A (1996) TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274:784–787

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Mayo M, Korneluk R, Goeddel D, Baldwin A (1998) NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–1683

    Article  CAS  PubMed  Google Scholar 

  • Whiteside GT, Munglani R (2001) Cell death in the superficial dorsal horn in a model of neuropathic pain. J Neurosci Res 64:168–173

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Lee H, Bellas R, Schauer S, Arsura M, Katz D, Fitzgerald M, Rothstein T, Sherr D, Sonenshein G (1996) Inhibition of NF-κB/Rel induces apoptosis of murine B cells. EMBO 15:4682–4690

    CAS  Google Scholar 

  • Zabel U, Henkel T, Silva M, Baeuerle P (1993) Nuclear uptake control of NF-κB by MAD-3, an IκB protein present in the nucleus. EMBO J 12:201–211

    CAS  PubMed  Google Scholar 

  • Zhu Y, Dulmsee C, Klumpp S, Krieglstein J (2004) Neuroprotection by transforming growth factor-β1 involves activation of nuclear factor-κB through phosphotidylinositol-3-OH kinase/AKT and mitogen activated protein kinase-extracellular-signal regulated kinase1, 2 signaling pathways. Neuroscience 123:897–906

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Lucy Colina and Dr. Cheryl Kassed for help with immunohistochemistry. This work was supported by the American Heart Association grant 0355183B (SS) and National Institute of Neurological Diseases and Stroke NS39141-01A2 (KRP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saporta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollock, G., Pennypacker, K., Mémet, S. et al. Activation of NF-κB in the mouse spinal cord following sciatic nerve transection. Exp Brain Res 165, 470–477 (2005). https://doi.org/10.1007/s00221-005-2318-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-2318-6

Keywords

Navigation