Skip to main content
Log in

On the Motion of a Self-Gravitating Incompressible Fluid with Free Boundary

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the motion of the interface separating a vacuum from an inviscid, incompressible, and irrotational fluid, subject to the self-gravitational force and neglecting surface tension, in two space dimensions. The fluid motion is described by the Euler–Poisson system in moving bounded simply-connected domains. A family of equilibrium solutions of the system are the perfect balls moving at constant velocity. We show that for smooth data that are small perturbations of size \({\epsilon}\) of these static states, measured in appropriate Sobolev spaces, the solution exists and the perturbation remains of size \({\epsilon}\) on a time interval of length at least \({c\epsilon^{-2},}\) where c is a constant independent of \({\epsilon.}\) This should be compared with the lifespan \({O(\epsilon^{-1})}\) provided by local well-posedness. The key ingredient of our proof is finding a two-step nonlinear transformation which removes quadratic terms from the nonlinearity. Compared with the gravity water wave problem, besides the different geometry of the bounded moving domain, an important difference is that the gravity in water waves is a constant vector, while the self-gravity in the Euler–Poisson system depends nonlinearly on the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard T., Burq N., Zuily C.: On the Cauchy problem for gravity water waves. Invent. Math. 198(1), 71–163 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alazard, T., Burq, N., Zuily, C.: Strichartz estimates and the Cauchy problem for the gravity water waves equations. ArXiv e-prints (April 2014)

  3. Alazard, T., Delort, J.-M.: Global solutions and asymptotic behavior for two dimensional gravity water waves. ArXiv e-prints (May 2013)

  4. Ambrose D.M., Masmoudi N.: The zero surface tension limit of two-dimensional water waves. Commun. Pure Appl. Math. 58(10), 1287–1315 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrose D.M., Masmoudi N.: The zero surface tension limit of three-dimensional water waves. Indiana Univ. Math. J. 58(2), 479–521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calderón A.-P.: Commutators of singular integral operators. Proc. Natl. Acad. Sci. USA 53, 1092–1099 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Christodoulou D.S., Lindblad H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53(12), 1536–1602 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coifman R.R., David G., Meyer Y.: La solution des conjecture de Calderón. Adv. Math. 48(2), 144–148 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coifman R.R., McIntosh A., Meyer Y.: L’intégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes lipschitziennes. Ann. Math. (2) 116(2), 361–387 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coutand D., Hole J., Shkoller S.: Well-posedness of the free-boundary compressible 3-D Euler equations with surface tension and the zero surface tension limit. SIAM J. Math. Anal. 45(6), 3690–3767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coutand D., Shkoller S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Craig W.: An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Commun. Partial Differ. Equ. 10(8), 787–1003 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Delort J.-M.: Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1. Ann. Sci. École Norm. Sup. (4) 34(1), 1–61 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deng, Y., Ionescu, A.D., Pausader, B., Pusateri, F.: Global solutions of the gravity-capillary water wave system in 3 dimensions. ArXiv e-prints (January 2016)

  15. Germain P., Masmoudi N., Shatah J.: Global solutions for the gravity water waves equation in dimension 3. Ann. Math. (2) 175(2), 691–754 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Germain P., Masmoudi N., Shatah J.: Global existence for capillary water waves. Commun. Pure Appl. Math. 68(4), 625–687 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hunter J., Ifrim M., Tataru D.: Two dimensional water waves in holomorphic coordinates. Commun. Math. Phys. 346(2), 483–552 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates II: global solutions. ArXiv e-prints (April 2014)

  19. Ifrim, M., Tataru, D.: Two dimensional gravity water waves with constant vorticity: I. Cubic lifespan. ArXiv e-prints (October 2015)

  20. Iguchi T.: Well-posedness of the initial value problem for capillary-gravity waves. Funkc. Ekvacioj 44(2), 219–241 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Ionescu, A.D., Pusateri, F.: Global regularity for 2d water waves with surface tension. ArXiv e-prints (August 2014)

  22. Ionescu A.D., Pusateri F.: Global solutions for the gravity water waves system in 2d. Invent. Math. 199(3), 653–804 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kenig, C.E.: Elliptic boundary value problems on Lipschitz domains. In: Stein, E.M. (ed.) Beijing Lectures in Harmonic Analysis (Beijing, 1984), Volume 112 of Annals of Mathematics Studies, pp. 131–183. Princeton University Press, Princeton (1986)

  24. Kenig, C.E.: Harmonic analysis techniques for second order elliptic boundary value problems, Volume 83 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington. American Mathematical Society, Providence (1994)

  25. Kinsey, R.H., Wu, S.: A Priori Estimates for Two-Dimensional Water Waves with Angled Crests. ArXiv e-prints (June 2014)

  26. Lannes D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18(3), 605–654 (2005) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lindblad H.: Well-posedness for the linearized motion of an incompressible liquid with free surface boundary. Commun. Pure Appl. Math. 56(2), 153–197 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lindblad H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. (2) 162(1), 109–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lindblad H., Nordgren K.H.: A priori estimates for the motion of a self-gravitating incompressible liquid with free surface boundary. J. Hyperbolic Differ. Equ. 6(2), 407–432 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nalimov, V.I.: The Cauchy–Poisson problem. Dinamika Splošn. Sredy, (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami), pp. 104–210, 254 (1974)

  31. Nordgren K.H.: Well-posedness for the equations of motion of an inviscid, incompressible, self-gravitating fluid with free boundary. J. Hyperbolic Differ. Equ. 7(3), 581–604 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ogawa M., Tani A.: Free boundary problem for an incompressible ideal fluid with surface tension. Math. Models Methods Appl. Sci. 12(12), 1725–1740 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shatah J.: Normal forms and quadratic nonlinear Klein–Gordon equations. Commun. Pure Appl. Math. 38(5), 685–696 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shatah J., Zeng C.: Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math. 61(5), 698–744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Simon J.C.H.: A wave operator for a nonlinear Klein–Gordon equation. Lett. Math. Phys. 7(5), 387–398 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Taylor G.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. Ser. A 201, 192–196 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Verchota G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59(3), 572–611 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130(1), 39–72 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12(2), 445–495 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu S.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 177(1), 45–135 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Wu S.: Global wellposedness of the 3-D full water wave problem. Invent. Math. 184(1), 125–220 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Yosihara H.: Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18(1), 49–96 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zakharov V.E., Dyachenko A.I., Vasilyev O.A.: New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface. Eur. J. Mech. B Fluids 21(3), 283–291 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang P., Zhang Z.: On the free boundary problem of three-dimensional incompressible Euler equations. Commun. Pure Appl. Math. 61(7), 877–940 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sijue Wu.

Additional information

Communicated by H.-T. Yau

Support of the National Science Foundation grants DMS-1253149 for the first and second, NSF-1045119 for the third, and DMS-1361791 for the fourth authors is gratefully acknowledged. The third author was also supported by the NSF under Grant No.0932078000 while in residence at the MSRI in Berkeley, CA during Fall 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bieri, L., Miao, S., Shahshahani, S. et al. On the Motion of a Self-Gravitating Incompressible Fluid with Free Boundary. Commun. Math. Phys. 355, 161–243 (2017). https://doi.org/10.1007/s00220-017-2884-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2884-z

Navigation