Skip to main content
Log in

On the Geodesic Hypothesis in General Relativity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we give a rigorous derivation of Einstein’s geodesic hypothesis in general relativity. We use small material bodies \({\phi^\epsilon}\) governed by the nonlinear Klein–Gordon equations to approximate the test particle. Given a vacuum spacetime \({([0, T]\times\mathbb{R}^3, h)}\) , we consider the initial value problem for the Einstein-scalar field system. For all sufficiently small ε and δ ≤ εq, q > 1, where δ, ε are the amplitude and size of the particle, we show the existence of the solution \({([0, T]\times\mathbb{R}^3, g, \phi^\epsilon)}\) to the Einstein-scalar field system with the property that the energy of the particle \({\phi^\epsilon}\) is concentrated along a timelike geodesic. Moreover, the gravitational field produced by \({\phi^\epsilon}\) is negligibly small in C 1, that is, the spacetime metric g is C 1 close to the given vacuum metric h. These results generalize those obtained by Stuart in (Ann Sci École Norm Sup (4) 37(2):312–362, 2004, J Math Pures Appl (9) 83(5):541–587, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berestycki H., Lions P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rat. Mech. Anal. 82(4), 313–345 (1983)

    MATH  MathSciNet  Google Scholar 

  2. Berestycki H., Lions P.-L.: Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Rat. Mech. Anal. 82(4), 347–375 (1983)

    MATH  MathSciNet  Google Scholar 

  3. Berestycki H., Lions P.-L., Peletier L.A.: An ODE approach to the existence of positive solutions for semilinear problems in R N. Indiana Univ. Math. J. 30(1), 141–157 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Choquet-Bruhat Y.: Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952)

    Article  MathSciNet  Google Scholar 

  5. Choquet-Bruhat, Y.: General relativity and the Einstein equations. Oxford Mathematical Monographs. Oxford: Oxford University Press, 2009

  6. Choquet-Bruhat Y., Christodoulou D.: Elliptic systems in H s spaces on manifolds which are Euclidean at infinity. Acta Math. 146(1–2), 129–150 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Choquet-Bruhat, Y., Fischer, A.E., Marsden, J.E.: Maximal hypersurfaces and positivity of mass. In: Isolated gravitating systems in general relativity. Proceedings of the International School of Physics Enrico Fermi, Vol. 67, New York: North-Holland, 1979

  8. Choquet-Bruhat Y., Fisher A., Marsden J.: Équations des contraintes sur une variété non compacte. C. R. Acad. Sci. Paris Sér. A-B 284(16), A975–A978 (1977)

    MathSciNet  Google Scholar 

  9. Choquet-Bruhat Y., GerochRobert R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)

    Article  ADS  MATH  Google Scholar 

  10. Christodoulou D., Murchadha N.Ó: The boost problem in general relativity. Commun. Math. Phys. 80(2), 271–300 (1981)

    Article  ADS  MATH  Google Scholar 

  11. Corvino R., Schoen J.: On the asymptotics for the vacuum Einstein constraint equations. J. Diff. Geom. 73(2), 185–217 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Dafermos M., Rodnianski I.: The redshift effect and radiation decay on black hole spacetimes. Comm. Pure Appl. Math. 62(7), 859–919 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dolgov A.D., Khriplovich I.B.: Normal coordinates along a geodesic. Gen. Rel. Grav. 15(11), 1033–1044 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Ehlers J., Geroch R.: Equation of motion of small bodies in relativity. Ann. Phys. 309(1), 232–236 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition. Berlin: Springer-Verlag, Berlin, 2001

  16. Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74(1), 160–197 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94(2), 308–348 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hawking, S.W., Ellis, G.G.R.: The large scale structure of space-time. Cambridge Monographs on Mathematical Physics, Vol. 1, London: Cambridge University Press, 1973

  19. Long E., Stuart D.: Effective dynamics for solitons in the nonlinear Klein-Gordon-Maxwell system and the Lorentz force law. Rev. Math. Phys. 21(4), 459–510 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Manasse F.K., Misner C.W.: Fermi normal coordinates and some basic concepts in differential geometry. J. Math. Phys. 4(6), 735–745 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. McLeod K.: Uniqueness of positive radial solutions of Δu + f(u) = 0 in R n. II. Trans. Am. Math. Soc. 339(2), 495–505 (1993)

    MATH  MathSciNet  Google Scholar 

  22. Peletier L.A., Serrin J.: Uniqueness of positive solutions of semilinear equations in R n. Arch. Rat. Mech. Anal. 81(2), 181–197 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  23. Shatah J.: Stable standing waves of nonlinear Klein-Gordon equations. Commun. Math. Phys. 91(3), 313–327 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Shatah J.: Unstable ground state of nonlinear Klein-Gordon equations. Trans. Am. Math. Soc. 290(2), 701–710 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shatah J, Strauss W.: Instability of nonlinear bound states. Commun. Math. Phys. 100(2), 173–190 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Strauss W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162 (1977)

    Article  ADS  MATH  Google Scholar 

  27. Stuart D.M.A.: Modulational approach to stability of non-topological solitons in semilinear wave equations. J. Math. Pures Appl. (9) 80(1), 51–83 (2001)

    MATH  MathSciNet  Google Scholar 

  28. Stuart D.M.A.: The geodesic hypothesis and non-topological solitons on pseudo-Riemannian manifolds. Ann. Sci. École Norm. Sup. (4) 37(2), 312–362 (2004)

    MATH  MathSciNet  Google Scholar 

  29. Stuart D.M.A.: Geodesics and the Einstein nonlinear wave system. J. Math. Pures Appl. (9) 83(5), 541–587 (2004)

    MATH  MathSciNet  Google Scholar 

  30. Taub A.: On thomas result concerning the geodesic hypothesis. Proc. Nat. Acad. Sci. USA 48, 1570–1571 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Thomas T.: On the geodesic hypothesis in the theory of gravitation. Proc. Nat. Acad. Sci. USA 48, 1567–1569 (1962)

    Article  ADS  MATH  Google Scholar 

  32. Weinstein M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yang, S.: Global solutions to nonlinear wave equations in time dependent inhomogeneous media. Arch. Ration. Mech. Anal. 209(2), 683–728 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwu Yang.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S. On the Geodesic Hypothesis in General Relativity. Commun. Math. Phys. 325, 997–1062 (2014). https://doi.org/10.1007/s00220-013-1834-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1834-7

Keywords

Navigation