Skip to main content
Log in

Full Field Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a notion of full field algebra which is essentially an algebraic formulation of the notion of genus-zero full conformal field theory. For any vertex operator algebras V L and V R, \({V^{L}\otimes V^{R}}\) is naturally a full field algebra and we introduce a notion of full field algebra over \({V^{L}\otimes V^{R}}\) . We study the structure of full field algebras over \({V^{L}\otimes V^{R}}\) using modules and intertwining operators for V L and V R. For a simple vertex operator algebra V satisfying certain natural finiteness and reductivity conditions needed for the Verlinde conjecture to hold, we construct a bilinear form on the space of intertwining operators for V and prove the nondegeneracy and other basic properties of this form. The proof of the nondegenracy of the bilinear form depends not only on the theory of intertwining operator algebras but also on the modular invariance for intertwining operator algebras through the use of the results obtained in the proof of the Verlinde conjecture by the first author. Using this nondegenerate bilinear form, we construct a full field algebra over \({V\otimes V}\) and an invariant bilinear form on this algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe T., Buhl G. and Dong C. (2004). Rationality, regularity and C 2-cofiniteness. Trans. Amer. Math. Soc. 356(8): 3391–3402

    Article  MATH  MathSciNet  Google Scholar 

  2. Bakalov, B., Kirillov, A., Jr.: Lectures on tensor categories and modular functors, University Lecture Series, Vol. 21, Providence, RI: Amer. Math. Soc., 2001

  3. Belavin A.A., Polyakov A.M. and Zamolodchikov A.B. (1984). Infinite conformal symmetries in two-dimensional quantum field theory. Nucl. Phys. B241: 333–380

    Article  ADS  MathSciNet  Google Scholar 

  4. Birman J.S. (1974). Braids, links and mapping class groups Annals of Mathematics Studies, Vol 82. Princeton University Press, Princeton, NJ

    Google Scholar 

  5. Borcherds R.E. (1986). Vertex algebras, Kac-Moody algebras and the Monster. Proc. Natl. Acad. Sci. USA 83: 3068–3071

    Article  ADS  MathSciNet  Google Scholar 

  6. Dong, C., Mason, G., Zhu, Y.: Discrete series of the Virasoro algebra and the moonshine module. In: Algebraic Groups and Their Generalizations: Quantum and infinite-dimensional Methods, Proc. 1991 Amer. Math. Soc. Summer Research Institute, ed. by W. J. Haboush, B. J. Parshall, Proc. Symp. Pure Math. 56, Part 2, Providence, RI: Amer. Math. Soc., 1994, pp. 295–316 (1991)

  7. Felder G., Fröhlich J., Fuchs J. and Schweigert C. (2002). Correlation functions and boundary conditions in rational conformal field theory and three-dimensional topology. Compositio. Math. 131: 189–237

    Article  MATH  MathSciNet  Google Scholar 

  8. Frenkel I.B., Huang Y.-Z. and Lepowsky J. (1993). On axiomatic approaches to vertex operator algebras and modules. Memoirs Amer. Math. Soc. 104: 593

    MathSciNet  Google Scholar 

  9. Frenkel I.B., Lepowsky J. and Meurman A. (1988). Vertex operator algebras and the Monster Pure and Appl Math, Vol. 134. Academic Press, NewYork

    Google Scholar 

  10. Fjelstad J., Fuchs J., Runkel I. and Schweigert C. (2006). TFT construction of RCFT correlators V: Proof of modular invariance and factorisation. Theory and Appl. of Categories 16: 342–433

    MATH  MathSciNet  Google Scholar 

  11. Fuchs J., Runkel I. and Schweigert C. (2002). Conformal correlation functions, Frobenius algebras and triangulations. Nucl. Phys. B624: 452–468

    Article  ADS  MathSciNet  Google Scholar 

  12. Fuchs J., Runkel I. and Schweigert C. (2002). TFT construction of RCFT correlators I: Partition functions. Nucl. Phys. B646: 353–497

    Article  ADS  MathSciNet  Google Scholar 

  13. Fuchs J., Runkel I. and Schweigert C. (2005). TFT construction of RCFT correlators, IV: Structure constants and correlation functions. Nucl. Phys. B715: 539–638

    Article  ADS  MathSciNet  Google Scholar 

  14. Huang Y.-Z. (1995). A theory of tensor products for module categories for a vertex operator algebra, IV, J. Pure. Appl. Alg. 100: 173–216

    Article  MATH  Google Scholar 

  15. Huang Y.-Z. (1996). Virasoro vertex operator algebras, (nonmeromorphic) operator product expansion and the tensor product theory. J. Alg. 182: 201–234

    Article  MATH  Google Scholar 

  16. Huang, Y.-Z.: Intertwining operator algebras, genus-zero modular functors and genus-zero conformal field theories. In: Operads: Proceedings of Renaissance Conferences, ed. J.-L. Loday, J. Stasheff, A. A. Voronov, Contemporary Math., Vol. 202, Providence, RI: Amer. Math. Soc., pp. 335–355, 1997.

  17. Huang Y.-Z. (1998). Genus-zero modular functors and intertwining operator algebras. Internat, J Math. 9: 845–863

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Huang Y.-Z. (2000). Generalized rationality and a “Jacobi identity” for intertwining operator algebras. Selecta Math. (N.S.) 6: 225–267

    Article  MATH  MathSciNet  Google Scholar 

  19. Huang Y.-Z. (2005). Vertex operator algebras, the Verlinde conjecture and modular tensor categories. Proc. Natl. Acad. Sci. USA 102: 5352–5356

    Article  ADS  MathSciNet  Google Scholar 

  20. Huang Y.-Z. (2005). Differential equations and intertwining operators. Comm. Contemp. Math. 7: 375–400

    Article  MATH  Google Scholar 

  21. Huang Y.-Z. (2005). Differential equations, duality and modular invariance. Comm. Contemp. Math. 7: 649–706

    Article  MATH  Google Scholar 

  22. Huang, Y.-Z.: Vertex operator algebras and the Verlinde conjecture. Comm. Contemp. Math., to appear; http://arxiv.org/list/math.QA/0406291, 2004

  23. Huang, Y.-Z.: Rigidity and modularity of vertex tensor categories. Comm. Contemp. Math., to appear; http://arxiv.org/list/math.QA/0502533, 2005

  24. Kapustin A. and Orlov D. (2003). Vertex algebras, mirror symmetry and D-branes: The case of complex tori. Commun. Math. Phys. 233: 79–136

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Kong, L.: A mathematical study of open-closed conformal field theories. Ph.D. thesis, Rutgers University, 2005

  26. Li H.S. (1999). Some finiteness properties of regular vertex operator algebras. J. Algebra, 212: 495–514

    Article  MATH  MathSciNet  Google Scholar 

  27. Moore G. and Seiberg N. (1988). Polynomial equations for rational conformal field theories. Phys. Lett. B212: 451–460

    ADS  MathSciNet  Google Scholar 

  28. Moore G. and Seiberg N. (1989). Classical and quantum conformal field theory. Commun. Math. Phys. 123: 177–254

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Moore G. and Seiberg N. (1989). Naturality in conformal field theory,. Nucl. Phys. B313: 16–40

    Article  ADS  MathSciNet  Google Scholar 

  30. Rosellen, M.: OPE-algebras, Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 2002, Bonner Mathematische Schriften [Bonn Mathematical Publications], Vol. 352, Universität Bonn, Mathematisches Institut, Bonn, 2002

  31. Rosellen M. (2005). OPE-algebras and their modules. Int. Math. Res. Not. 2005: 433–447

    Article  MATH  MathSciNet  Google Scholar 

  32. Segal, G.: The definition of conformal field theory. In: Differential geometrical methods in theoretical physics (Como, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 250, Dordrecht: Kluwer Acad. Publ., pp. 165–171, 1988

  33. Segal, G.: Two-dimensional conformal field theories and modular functors. In: Proceedings of the IXth International Congress on Mathematical Physics, Swansea, 1988, Bristol: Hilger, pp. 22–37, 1989

  34. Segal, G.: The definition of conformal field theory, preprint, 1988; also in: Topology, geometry and quantum field theory, ed. U. Tillmann, London Math. Soc. Lect. Note Ser., Vol. 308, Cambridge: Cambridge University Press, pp. 421–457, 2004

  35. Tsukada H. (1991). String path integral realization of vertex operator algebras. Mem. Amer. Math. Soc. 91(444): vi+138

    MathSciNet  Google Scholar 

  36. Turaev V.G. (1994). Quantum invariants of knots and 3-manifolds. de Gruyter Studies in Math., Vol. 18. Walter de Gruyter, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Zhi Huang.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YZ., Kong, L. Full Field Algebras. Commun. Math. Phys. 272, 345–396 (2007). https://doi.org/10.1007/s00220-007-0224-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0224-4

Keywords

Navigation