Skip to main content
Log in

A Proof of Scott’s Correction for Matter

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper contains a strengthening of Stability of Matter, which in particular shows that Thomas-Fermi theory, which is already known to give the leading order contribution to the energy of Matter, if supplemented with the so-called Scott correction is correct uniformly in the number of nuclei. New more precise estimates of the volume of Matter also follow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bach, V.: Error bound for the Hartree-Fock Energy of Atoms and Molecules. Commun. Math. Phys. 147(3), 527–548 (1992)

    MATH  Google Scholar 

  2. Balodis, P., Solovej, P.: On the Asymptotic Exactness of Thomas-Fermi Theory in the Thermodynamic Limit. Ann. Henri Poincaré 1, 281–306 (2000)

    Google Scholar 

  3. Brezis, H.: Analyse Fonctionelle. Paris: Masson, 1983

  4. Brezis, H., Lieb, E.: Long range atomic potentials in Thomas-Fermi Theory. Commun. Math. Phys. 65, 231–246 (1979)

    MathSciNet  MATH  Google Scholar 

  5. Conlon, G.: The ground state energy of a classical gas. Commun. Math. Phys. 94, 439–458 (1984)

    MathSciNet  MATH  Google Scholar 

  6. Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. Math. 106, 93–100 (1977)

    MATH  Google Scholar 

  7. Dyson, F., Lenard, A.: Stability of Matter I and II, J. Math. Phys. 8, 423–434 (1967); ibid 9, 698–711 (1968)

    MATH  Google Scholar 

  8. Federbush, P.: A new approach to the stability of matter problem. I, II. J. Math. Phys. 16, 347–351 (1975); ibid. 16, 706–709 (1975)

    Google Scholar 

  9. Fefferman, C., Fröhlich, J., G-M.Graf.: Stability of ultraviolet-cutoff quantum electrodynamics with non-relativistic matter. Commun. Math. Phys. 190, 309–330 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fefferman, C.: Stability of Coulomb systems in a magnetic field. Proc. Nat. Acad. Sci. U.S.A. 92, 5006–5007 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Fefferman, C., Seco, L.: On the energy of a large atom, Bull. A. M. S 23, 525–530 (1990)

    MathSciNet  MATH  Google Scholar 

  12. Fefferman, C., de la Llave, R.: Relativistic stability of matter. I. Rev. Mat. Iberoamericana 2, 119–213 (1986)

    MathSciNet  MATH  Google Scholar 

  13. Graf, G.M.: Stability of matter through an electrostatic inequality. Helv. Phys. Acta 70, 72–79 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Graf, G.M., Schenker, D.: On the Molecular Limit of Coulomb gases. Commun. Math. Phys. 174, 215–227 (1995)

    MathSciNet  MATH  Google Scholar 

  15. de Guzmán, M.: A covering lemma with applications to differentiability of measures and singular integral operators. Studia Math. 34, 299–317 (1970)

    Google Scholar 

  16. Ivrii, V., Sigal, I.M.: Asymptotics of the ground state energies of large Coulomb systems. Ann. Math. 128, 243–335 (1993)

    MathSciNet  Google Scholar 

  17. Lieb, E.H.: Bounds on the eigenvalues of the Laplace and Schrödinger operators. Bull. Am. Math. Soc. 82, 751–753 (1976)

    MATH  Google Scholar 

  18. Lieb, E.H.: The stability of matter. Rev. Mod. Phys. 48, 553–569 (1981)

    Article  Google Scholar 

  19. Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lieb, E.H.: Bound of the maximum negative ionization of atoms and molecules. Phys. Rev. A 29, 3018–3028 (1984)

    Article  Google Scholar 

  21. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, Vol~14, Providence, RI: A.M.S., 1997

  22. Lieb, E.H., Loss, M., Solovej, J.P.: Stability of matter in magnetic fields. Phys. Rev. Lett. 75, 985–989 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lieb, E.H., Oxford, S.: An improved lower bound of the indirect Coulomb energy. Int. J. Quantum. Chem. 19, 427–439 (1981)

    Google Scholar 

  24. Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    MATH  Google Scholar 

  25. Lieb, E.H., Siedentop, H., Solovej, J.P.: Stability and instability of relativistic electrons in classical electromagnetic fields. J. Stat. Phys. 89, 37–59 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Lieb, E.H., Thirring, W.E.: Bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett. 35, 687–689 (1975)

    Article  Google Scholar 

  27. Lieb, E.H., Thirring, W.E.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in Mathematical Physics, Essays in honor of Valentin Bargmann, E.H. Lieb, B. Simon, and A.S. Wightman (eds.), Princeton, New Jersey: Princeton University Press, 1976

  28. Lieb, E.H., Yau, H.T.: The stability and instability of relativistic matter. Commun. Math. Phys. 118, 177–213 (1988)

    MathSciNet  MATH  Google Scholar 

  29. Rozenblum, G.: Distribution of the discrete spectrum of singular differential operators. Doklady Akademii Nauk SSSR 202(5), 1012–1015 (1972)

    Google Scholar 

  30. Sobolev, A.V.: The quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a strong homogeneus magnetic field. Duke Math. J. 74(2), 319–429 (1994)

    MATH  Google Scholar 

  31. Sobolev, A.V.: Quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a moderate magnetic field. Ann. Inst. Henry Poincaré. 62(4), 325–359 (1995)

    MATH  Google Scholar 

  32. Sobolev, A.V.: Discrete spectrum asymptotics for the Schrödinger operator with a singular potential and a magnetic field. Rev. Math. Phys. 8(6), 861–903 (1996)

    MATH  Google Scholar 

  33. Siedentop, H., Weikard, R.: On the leading energy correction for the statistical model of an atom: interacting case. Commun. Math. Phys 112, 471–490 (1987)

    MathSciNet  MATH  Google Scholar 

  34. Hughes, W.: An atomic energy bound that gives Scott’s correction. Adv. Math 79, 213–270 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Balodis.

Additional information

Communicated by P. Sarnak

Work partially supported under the research project Ref. PB98-0067

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balodis, P. A Proof of Scott’s Correction for Matter. Commun. Math. Phys. 249, 79–132 (2004). https://doi.org/10.1007/s00220-004-1104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1104-9

Keywords

Navigation