Skip to main content
Log in

Sum Rules and the Szegő Condition for Orthogonal Polynomials on the Real Line

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the Case sum rules, especially C 0 , for general Jacobi matrices. We establish situations where the sum rule is valid. Applications include an extension of Shohat’s theorem to cases with an infinite point spectrum and a proof that if lim n(a n −1)=α and lim nb n =β exist and 2α<|β|, then the Szegő condition fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Askey, R., Ismail, M.: Recurrence relations, continued fractions, and orthogonal polynomials. Mem. Am. Math. Soc. 49, (1984)

  2. Case, K.M.: Orthogonal polynomials. II. J. Math. Phys. 16, 1435–1440 (1975)

    Article  Google Scholar 

  3. Charris, J., Ismail, M.E.H.: On sieved orthogonal polynomials, V. Sieved Pollaczek polynomials. SIAM J. Math. Anal. 18, 1177–1218 (1987)

    MATH  Google Scholar 

  4. Damanik, D., Hundertmark, D., Simon, B.: Bound states and the Szegő condition for Jacobi matrices and Schrödinger operators. J. Funct. Anal., to appear

  5. Deift, P., Killip, R.: On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials. Commun. Math. Phys. 203, 341–347 (1999)

    Article  MATH  Google Scholar 

  6. Denisov, S.A.: On the coexistence of absolutely continuous and singular continuous components of the spectral measure for some Sturm-Liouville operators with square summable potentials. J. Diff. Eqs. 191, 90–104 (2003)

    Article  Google Scholar 

  7. Dombrowski, J., Nevai, P.: Orthogonal polynomials, measures and recurrence relations. SIAM J. Math. Anal. 17, 752–759 (1986)

    MathSciNet  Google Scholar 

  8. Figotin, A., Pastur, L.: Spectra of random and almost-periodic operators. Berlin: Springer-Verlag, 1992

  9. Gončar, A.A.: On convergence of Padé approximants for some classes of meromorphic functions. Math. USSR Sb. 26, 555–575 (1975)

    Google Scholar 

  10. Hundertmark, D., Simon, B.: Lieb-Thirring inequalities for Jacobi matrices. J. Approx. Theory 118, 106–130 (2002)

    Article  MATH  Google Scholar 

  11. Killip, R., Simon, B.: Sum rules for Jacobi matrices and their applications to spectral theory. Ann. Math. 158, 253–321 (2003)

    Google Scholar 

  12. Laptev, A., Naboko, S., Safronov, O.: On new relations between spectral properties of Jacobi matrices and their coefficients. Commun. Math. Phys., to appear

  13. Nevai, P.: Orthogonal polynomials defined by a recurrence relation. Trans. Am. Math. Soc. 250, 369–384 (1979)

    MathSciNet  Google Scholar 

  14. Nevai, P.: Orthogonal polynomials. Mem. Am. Math. Soc. 18(213), 185 pp (1979)

    Google Scholar 

  15. Nevai, P.: Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory 48, 3–167 (1986)

    MATH  Google Scholar 

  16. Nikishin, E.M.: Discrete Sturm-Liouville operators and some problems of function theory. J. Sov. Math. 35, 2679–2744 (1986)

    MATH  Google Scholar 

  17. Peherstorfer, F., Yuditskii, P.: Asymptotics of orthonormal polynomials in the presence of a denumerable set of mass points. Proc. Am. Math. Soc. 129, 3213–3220 (2001)

    Article  MathSciNet  Google Scholar 

  18. Pollaczek, F.: Sur une généralisation des polynomes de Legendre. C. R. Acad. Sci. Paris 228, 1363–1365 (1949)

    MathSciNet  Google Scholar 

  19. Pollaczek, F.: Systèmes de polynomes biorthogonaux qui généralisent les polynomes ultrasphériques. C. R. Acad. Sci. Paris 228, 1998–2000 (1949)

    MathSciNet  Google Scholar 

  20. Pollaczek, F.: Sur une famille de polynômes orthogonaux qui contient les polynômes d’Hermite et de Laguerre comme cas limites. C. R. Acad. Sci. Paris 230, 1563–1565 (1950)

    MathSciNet  Google Scholar 

  21. Rudin, W.: Real and Complex Analysis, 3rd edn. New York: Mc-Graw Hill, 1987

  22. Shohat, J.A.: Théorie Générale des Polinomes Orthogonaux de Tchebichef. Mémorial des Sciences Mathématiques, Vol. 66. Paris: 1934, pp. 1–69

  23. Simon, B.: The classical moment problem as a self-adjoint finite difference operator. Adv. Math. 137, 82–203 (1998)

    Article  MathSciNet  Google Scholar 

  24. Szegő, G.: Beiträge zue Theorie der Toeplitzschen Formen, I, II. Math. Z. 6, 167–202 (1920); 9, 167–190 (1921)

    Google Scholar 

  25. Szegő, G.: On certain special sets of orthogonal polynomials. Proc. Am. Math. Soc. 1, 731–737 (1950)

    MathSciNet  Google Scholar 

  26. Szegő, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Colloquium Publications, Vol. XXIII. Providence, RI: American Mathematical Society, 1975

  27. Verblunsky, S.: On positive harmonic functions. Proc. London Math. Soc. 40, 290–320 (1935)

    MATH  Google Scholar 

  28. Zlatoš, A.: The Szegő condition for Coulomb Jacobi matrices. J. Approx. Theory 121, 119–142 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Simon.

Additional information

Communicated by M. Aizenman

Supported in part by NSF grant DMS-9707661.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, B., Zlatoš, A. Sum Rules and the Szegő Condition for Orthogonal Polynomials on the Real Line. Commun. Math. Phys. 242, 393–423 (2003). https://doi.org/10.1007/s00220-003-0906-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-0906-5

Keywords

Navigation