Skip to main content
Log in

Acinetobacter as a potentially important producer of urocanic acid in chub mackerel, a histidine metabolite of emerging health concern

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Urocanic acid, deaminated histidine and the first intermediate in the histidine utilization (Hut) pathway in bacteria, has recently been suggested to have adverse health effects by inducing scombrotoxicosis and immunosuppression after transcis isomerization. This work aimed to shed some light on the microbiology of its formation in scombroid fish, given that such information is very scarce. The isolation of urocanic acid producers from chub mackerel was basically based on enrichment of bacteria possessing the Hut pathway with histidine as the sole source of carbon, energy, and nitrogen. Morphological and molecular identification revealed that the isolates (n = 12), taken from the skin, gills, and intestine, were comprised entirely of Acinetobacter from at least five species. This implies that the Hut pathway in the microbes can be particularly active and as such conferred a growth advantage. Dynamic monitoring of bacterial growth and urocanic acid production in fish juice broth indicated that urocanic acid is a primary metabolite and its production is a closely growth-associated process. This in turn implies that its production can be controlled directly by suppressing the bacterial growth. Several potential methods are proposed through a study of the growth characteristics and preservative susceptibility of representative isolates. In conclusion, this work suggests that Acinetobacter can constitute a potentially important group of urocanic acid producers in chub mackerel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhong JJ, Liao N, He M, Pu Y, Liu D (2018) Development of an analytical method for urocanic acid isomers in fish based on reactive extraction cleanup and chaotropic chromatography techniques. J Chromatogr A 1548:44–50

    Article  CAS  PubMed  Google Scholar 

  2. Ezzat MA, Zare D, Karim R, Ghazali HM (2015) Trans-and cis-urocanic acid, biogenic amine and amino acid contents in ikan pekasam (fermented fish) produced from Javanese carp (Puntius gonionotus) and black tilapia (Oreochromis mossambicus). Food Chem 172:893–899

    Article  CAS  PubMed  Google Scholar 

  3. Hug DH, Dunkerson DD, Hunter JK (1999) The degradation of l-histidine and trans- and cis-urocanic acid by bacteria from skin and the role of bacterial cis-urocanic acid isomerase. J Photochem Photobiol B 50(1):66–73

    Article  CAS  PubMed  Google Scholar 

  4. FAO/WHO (2012) Joint FAO/WHO expert meeting on the public health risks of histamine and other biogenic amines from fish and fishery products. http://www.fao.org/3/a-i3390e.pdf. Accessed 24 May 2018

  5. Hungerford JM (2010) Scombroid poisoning: a review. Toxicon 56(2):231–243

    Article  CAS  PubMed  Google Scholar 

  6. Lehane L, Olley J (2000) Histamine fish poisoning revisited. Int J Food Microbiol 58:1–37

    Article  CAS  PubMed  Google Scholar 

  7. Ullrich SE (2007) Sunlight and skin cancer: lessons from the immune system. Mol Carcinog 46(8):629–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zare D, Muhammad K, Bejo MH, Ghazali HM (2015) Determination of trans- and cis-urocanic acid in relation to histamine, putrescine, and cadaverine contents in tuna (Auxis Thazard) at different storage temperatures. J Food Sci 80(2):T479–T483

    Article  CAS  PubMed  Google Scholar 

  9. Anglin JH Jr, Batten WH (1968) Studies on cis urocanic acid. J Investig Dermatol 50(6):463–466

    Article  CAS  PubMed  Google Scholar 

  10. Prater MR, Gogal RM, De Fabo EC, Longstreth J, Holladay SD (2003) Immunotoxic effects of cis-urocanic acid exposure in C57BL/6N and C3H/HeN mice. Photochem Photobiol 77(4):383–389

    Article  CAS  PubMed  Google Scholar 

  11. Zare D, Muhammad K, Bejo MH, Ghazali HM (2015) Determination of urocanic acid, a compound implicated in histamine toxicity, and assessment of biogenic amines relative to urocanic acid content in selected fish and fish products. J Food Compos Anal 37:95–103

    Article  CAS  Google Scholar 

  12. Kawai A, Sakaguchi M (1968) Histidine metabolism in fish—II. Formation of urocanic, formiminoglutamic and glutamic acids from histidine in the livers of carp and mackerel. Bull Jpn Soc Sci Fish 34(6):507–511

    Article  CAS  Google Scholar 

  13. Sakaguchi M, Kawai A (1968) Histidine metabolism in fish—III. Purification and some properties of histidine deaminase from mackerel muscle. Bull Jpn Soc Sci Fish 34(11):1040–1048

    Article  CAS  Google Scholar 

  14. Sakaguchi M, Sugiyama M, Sugiyama T, Kawai A (1970) Histidine metabolism in fish—IV. Comparative study on histidine deaminases from muscle and liver of mackerel and from bacteria. Bull Jpn Soc Sci Fish 36(2):200–206

    Article  CAS  Google Scholar 

  15. Mackie IM, Fernandez-Salguéro J (1977) Histidine metabolism in fish. Urocanic acid in mackerel (Scomber scombrus). J Sci Food Agric 28(10):935–940

    Article  CAS  PubMed  Google Scholar 

  16. Baranowski JD (1985) Low-temperature production of urocanic acid by spoilage bacteria isolated from mahimahi (Coryphaena hippurus). Appl Environ Microbiol 50(2):546–547

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shibatani T, Nishimura N, Nabe K, Kakimoto T, Chibata I (1974) Enzymatic production of urocanic acid by Achromobacter liquidum. Appl Microbiol 27(4):688–694

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bender RA (2012) Regulation of the histidine utilization (Hut) system in bacteria. Microbiol Mol Biol Rev 76(3):565–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bender DA (2012) Amino acid metabolism, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  20. Daniel D, dos Santos VB, Vidal DTR, do Lago CL (2015) Determination of biogenic amines in beer and wine by capillary electrophoresis–tandem mass spectrometry. J Chromatogr A 1416:121–128

    Article  CAS  PubMed  Google Scholar 

  21. Self RL, Wu WH, Marks HS (2011) Simultaneous quantification of eight biogenic amine compounds in tuna by matrix solid-phase dispersion followed by HPLC–orbitrap mass spectrometry. J Agric Food Chem 59(11):5906–5913

    Article  CAS  PubMed  Google Scholar 

  22. Zare D, Muhammad K, Bejo MHB, Ghazali HM (2012) Development and validation of an ion-pair chromatographic method for simultaneous determination of trans- and cis-urocanic acid in fish samples. J Chromatogr A 1256:144–149

    Article  CAS  PubMed  Google Scholar 

  23. Zare D, Muhammad K, Bejo MH, Ghazali HM (2013) Changes in urocanic acid, histamine, putrescine and cadaverine levels in Indian mackerel (Rastrelliger kanagurta) during storage at different temperatures. Food Chem 139(1):320–325

    Article  CAS  PubMed  Google Scholar 

  24. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dalgaard P (1995) Qualitative and quantitative characterization of spoilage bacteria from packed fish. Int J Food Microbiol 26(3):319–333

    Article  CAS  PubMed  Google Scholar 

  26. Parlapani FF, Mallouchos A, Haroutounian SA, Boziaris IS (2017) Volatile organic compounds of microbial and non-microbial origin produced on model fish substrate un-inoculated and inoculated with gilt-head sea bream spoilage bacteria. LWT Food Sci Technol 78:54–62

    Article  CAS  Google Scholar 

  27. Serio A, Fusella GC, López CC, Sacchetti G, Paparella A (2014) A survey on bacteria isolated as hydrogen sulfide-producers from marine fish. Food Control 39:111–118

    Article  CAS  Google Scholar 

  28. Juni E (2005) Genus II Acinetobacter. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds) Bergey's manual of systematic bacteriology, vol 2 (the proteobacteria), part B (the gammaproteobacteria), 2nd edn. Springer, New York

    Google Scholar 

  29. Kämpfer P (2014) Acinetobacter. In: Batt CA, Tortorello ML (eds) Encyclopedia of food microbiology, vol 1. Academic Press, London

    Google Scholar 

  30. Dunlap CA, Rooney AP (2018) Acinetobacter dijkshoorniae is a later heterotypic synonym of Acinetobacter lactucae. Int J Syst Evol Microbiol 68(1):131–132

    Article  PubMed  Google Scholar 

  31. Betts G (2006) In: de Blackburn WC (ed) Food spoilage microorganisms. Woodhead Publishing, Cambridge

    Google Scholar 

  32. Saha SC, Chopade BA (2002) Effect of food preservatives on Acinetobacter genospecies isolated from meat. J Food Sci Technol 39(1):26–32

    CAS  Google Scholar 

  33. Teixeira LM, Merquior VLC (2014) The family Moraxellaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: gammaproteobacteria, 4th edn. Springer, Heidelberg

    Google Scholar 

  34. Gram L, Dalgaard P (2002) Fish spoilage bacteria—problems and solutions. Curr Opin Biotechnol 13(3):262–266

    Article  CAS  PubMed  Google Scholar 

  35. Imanaka H (1962) Urocanic acid production by sporogenous bacteria: Part II. Cultural conditions and mechanisms of urocanic acid accumulation. Agric Biol Chem 26(1):49–55

    CAS  Google Scholar 

  36. Lambert AD, Smith JP, Dodds KL (1991) Shelf life extension and microbiological safety of fresh meat—a review. Food Microbiol 8(4):267–297

    Article  Google Scholar 

  37. Weng PF, Li WW, Wu ZF, Zhou XJ, Chen SB, Zhang JJ (2013) Analysis of bacteria diversity and predominant microorganism in aquatic products of mackerel. Oceanol Limnol Sin 44(3):788–795

    CAS  Google Scholar 

  38. Dalgaard P (2014) Microbiological changes. In: Ryder J, Iddya K, Ababouch L (eds) Assessment and management of seafood safety and quality: current practices and emerging issues. FAO, Rome

    Google Scholar 

  39. Kowalski W (2010) Ultraviolet germicidal irradiation handbook: UVGI for air and surface disinfection. Springer, Heidelberg

    Google Scholar 

  40. Sanjuás-Rey M, Gallardo JM, Barros-Velázquez J, Aubourg SP (2012) Microbial activity inhibition in chilled mackerel (Scomber scombrus) by employment of an organic acid-icing system. J Food Sci 77(5):M264–M269

    Article  CAS  PubMed  Google Scholar 

  41. Metin S, Erkan N, Varlik C, Aran N (2001) Extension of shelf-life of chub mackerel (Scomber japonicus Houttuyn 1780) treated with lactic acid. Eur Food Res Technol 213(3):174–177

    Article  CAS  Google Scholar 

  42. Mah JH, Hwang HJ (2009) Effects of food additives on biogenic amine formation in Myeolchi-jeot, a salted and fermented anchovy (Engraulis japonicus). Food Chem 114(1):168–173

    Article  CAS  Google Scholar 

  43. Peterkofsky A, Mehler LN (1963) Inhibition of pseudomonas histidase: evidence for a metal cofactor. Biochim Biophys Acta (BBA) Spec Sect Enzymol Subj 73(1):159–162

    CAS  Google Scholar 

  44. Silva CC, da Ponte DJ, Dapkevicius MLE (1998) Storage temperature effect on histamine formation in big eye tuna and skipjack. J Food Sci 63(4):644–647

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant number 2016YFD0400301) and the National Natural Science Foundation of China (Grant number 31701715). The authors are indebted to Patrick Leung for English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, JJ., Liao, N., Li, C. et al. Acinetobacter as a potentially important producer of urocanic acid in chub mackerel, a histidine metabolite of emerging health concern. Eur Food Res Technol 245, 825–835 (2019). https://doi.org/10.1007/s00217-018-3217-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3217-y

Keywords

Navigation