Skip to main content
Log in

Antioxidant capacities and total polyphenol content of nine commercially available tea juices measured by an in vitro digestion model

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The total antioxidant capacity and total polyphenol content of 9 tea juices were examined following in vitro digestion model. Results show that there was a significant variation in total antioxidant capacity [16,392.30 ± 111.64–22,340.23 ± 46.73 μmol VC/L (DPPH), 3,194.24 ± 14.76–13,795.07 ± 37.46 μmol Trolox/L (ABTS), 2,540.61 ± 59.79–7,951.57 ± 31.91 μmol Trolox/L ferric reducing antioxidant power (FRAP)] and total polyphenol content (265.84 ± 9.52–876.62 ± 6.59 μg GAE/mL). Following the in vitro digestion, most of the juices of antioxidant capacities and 7 juices of the total polyphenol content were decreased. Before the in vitro digestion, a highly positive correlation was found between the total polyphenol content and FRAP value. After the gastric phase of digestion, there was a very strong positive linear correlation between the total polyphenol content and total antioxidant capacity. After the duodenal phase of digestion, the correlation between the total polyphenol content and total antioxidant capacity was very weak, and also, a very weak linear correlation was found between the antioxidant assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DPPH:

2, 2-diphenyl-1-picrylhydrazyl

ABTS:

2, 2-azinobs-(3-ethylbenzothiazoline-6-sulfonic acid)

FRAP:

Ferric reducing antioxidant power

References

  1. Young IS, Woodside JV (2001) Antioxidants in health and disease. J Clin Pathol 54(3):176–186

    Article  CAS  Google Scholar 

  2. Valko M, Rhodes CJ, Moncol J et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40

    Article  CAS  Google Scholar 

  3. Heitzer T, Schlinzig T, Krohn K et al (2001) Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104(22):2673–2678

    Article  CAS  Google Scholar 

  4. Jomova K, Vondrakova D, Lawson M et al (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345(1–2):9–104

    Google Scholar 

  5. Hensley K, Robinson KA, Gabbita SP et al (2000) Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med 28(10):1456–1462

    Article  CAS  Google Scholar 

  6. Nordberg J, Arnér ESJ (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Bio Med 31(11):1287–1312

    Article  CAS  Google Scholar 

  7. Chan EWC, Lim YY, Chew YL (2007) Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. Food Chem 102(4):1214–1222

    Article  CAS  Google Scholar 

  8. Geetha T, Garg A, Chopra K et al (2004) Delineation of antimutagenic activity of catechin, epicatechin and green tea extract. Mutat Res 556(1–2):65–74

    CAS  Google Scholar 

  9. Luypaert J, Zhang MH, Massart DL (2003) Feasibility study for the use of near infrared spectroscopy in the qualitative and quantitative analysis of green tea, Camellia sinensis (L.). Anal Chim Acta 478(2):303–312

    Article  CAS  Google Scholar 

  10. Fu L, Xu BT, Gan RY et al (2011) Total phenolic contents and antioxidant capacities of herbal and tea infusions. Int J Mol Sci 12(4):2112–2124

    Article  CAS  Google Scholar 

  11. Jayasekera S, Molan AL, Garg M et al (2011) Variation in antioxidant potential and total polyphenol content of fresh and fully-fermented Sri Lankan tea. Food Chem 125(2):536–541

    Article  CAS  Google Scholar 

  12. Ui A, Kuriyama S, Kakizaki M et al (2009) Green tea consumption and the risk of liver cancer in Japan: the Ohsaki cohort study. Cancer Causes Control 20(10):1939–1945

    Article  Google Scholar 

  13. Wang N, Zheng Y, Jiang Q et al (2008) Tea and reduced liver cancer mortality. Epidemiology 19(5):761

    CAS  Google Scholar 

  14. De Bacquer D, Clays E, Delanghe J et al (2006) Epidemiological evidence for an association between habitual tea consumption and markers of chronic inflammation. Atherosclerosis 189(2):428–435

    Article  Google Scholar 

  15. Muramatsu K, Fukuyo M, Hara Y (1986) Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats. J Nutr Sci Vitaminol (Tokyo) 32(6):613–622

    Article  CAS  Google Scholar 

  16. Yokozawa T, Dong E, Nakagawa T et al (1998) In vitro and in vivo studies on the radical-scavenging activity of tea. J Agric Food Chem 46(6):2143–2150

    Article  CAS  Google Scholar 

  17. Yokozawa T, Nakagawa T, Kitani K (2002) Antioxidative activity of green tea polyphenol in cholesterol-fed rats. J Agric Food Chem 50(12):3549–3552

    Article  CAS  Google Scholar 

  18. Sannella AR, Messori L, Casini A et al (2007) Antimalarial properties of green tea. Biochem Biophys Res Commun 353(1):177–181

    Article  CAS  Google Scholar 

  19. Coyle CH, Philips BJ, Morrisroe SN et al (2008) Antioxidant effects of green tea and its polyphenols on bladder cells. Life Sci 83(1–2):12–18

    Article  CAS  Google Scholar 

  20. Qin XY, Cheng Y, Yu LC (2012) Potential protection of green tea polyphenols against intracellular amyloid beta-induced toxicity on primary cultured prefrontal cortical neurons of rats. Neurosci Lett 513(2):170–173

    Article  CAS  Google Scholar 

  21. Siripatrawan U, Harte BR (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll 24(8):770–775

    Article  CAS  Google Scholar 

  22. O’Connell OF, Ryan L, O’Brien NM (2007) Xanthophyll carotenoids are more bioaccessible from fruits than dark green vegetables. Nutr Res 27(5):258–264

    Article  Google Scholar 

  23. Ryan L, O’Connell O, Sullivan L et al (2008) Micellarisation of carotenoids from raw and cooked vegetables. Plant Foods Hum Nutr 63(3):127–133

    Article  CAS  Google Scholar 

  24. Cai Y, Sun M, Corke H (2003) Antioxidant activity of betalains from plants of the amaranthaceae. J Agric Food Chem 51(8):2288–2294

    Article  CAS  Google Scholar 

  25. Ozgen M, Reese RN, Tulio AZ et al (2006) Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2‘-diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem 54(4):1151–1157

    Article  CAS  Google Scholar 

  26. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76

    Article  CAS  Google Scholar 

  27. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16(3):144–158

    CAS  Google Scholar 

  28. Song FL, Gan RY, Zhang Y et al (2010) Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants. Int J Mol Sci 11(6):2362–2372

    Article  CAS  Google Scholar 

  29. Paetau I, Khachik F, Brown ED et al (1998) Chronic ingestion of lycopene-rich tomato juice or lycopene supplements significantly increases plasma concentrations of lycopene and related tomato carotenoids in humans. Am J Clin Nutr 68(6):1187–1195

    CAS  Google Scholar 

  30. Bub A, Watzl B, Abrahamse L et al (2000) Moderate intervention with carotenoid-rich vegetable products reduces lipid peroxidation in men. J Nutr 130(9):2200–2206

    CAS  Google Scholar 

  31. Watzl B, Bub A, Briviba K et al (2003) Supplementation of a low-carotenoid diet with tomato or carrot juice modulates immune functions in healthy men. Ann Nutr Metab 47(6):255–261

    Article  CAS  Google Scholar 

  32. Ryan L, Prescott SL (2010) Stability of the antioxidant capacity of twenty-five commercially available fruit juices subjected to an in vitro digestion. Int J Food Sci Technol 45(6):1191–1197

    Article  CAS  Google Scholar 

  33. Wootton-Beard PC, Moran A, Ryan L (2011) Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Res Int 44(1):217–224

    Article  CAS  Google Scholar 

  34. Wootton-Beard PC, Ryan L (2011) A beetroot juice shot is a significant and convenient source of bioaccessible antioxidants. J Funct Foods 3(4):329–334

    Article  CAS  Google Scholar 

  35. McDougall GJ, Fyffe S, Dobson P et al (2005) Anthocyanins from red wine–their stability under simulated gastrointestinal digestion. Phytochem 66(21):2540–2548

    Article  CAS  Google Scholar 

  36. Bermúdez-Soto MJ, Tomás-Barberán FA, García-Conesa MT (2007) Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chem 102(3):865–874

    Article  Google Scholar 

  37. McDougall GJ, Dobson P, Smith P et al (2005) Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. J Agric Food Chem 53(15):5896–5904

    Article  CAS  Google Scholar 

  38. Gardner PT, White TAC, McPhail DB et al (2000) The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem 68(4):471–474

    Article  CAS  Google Scholar 

  39. Ravichandran K, Saw NMMT, Mohdaly AAA, et al (2011) Impact of processing of red beet on betalain content and antioxidant activity. Food Res Int. doi:10.1016/j.foodres07.002

  40. Tsai PJ, Sheu CH, Wu PH et al (2010) Thermal and pH stability of betacyanin pigment of Djulis (Chenopodium formosanum) in Taiwan and their relation to antioxidant activity. J Agric Food Chem 58(2):1020–1025

    Article  CAS  Google Scholar 

  41. Osorio-Esquivel O, Alicia-Ortiz-Moreno ÁlvarezVB et al (2011) Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits. Food Res Int 44(7):2160–2168

    Article  CAS  Google Scholar 

  42. Wu L, Hsu H, Chen Y et al (2006) Antioxidant and antiproliferative activities of red pitaya. Food Chem 95(2):319–327

    Article  CAS  Google Scholar 

  43. Tenore GC, Novellino E, Basile A (2012) Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. J Funct Foods 4(1):129–136

    Article  CAS  Google Scholar 

  44. Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochem 62(3):247–269

    Article  CAS  Google Scholar 

  45. Reddy MK, Alexander-Lindo RL, Nair MG (2005) Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors. J Agric Food Chem 53(23):9268–9273

    Article  CAS  Google Scholar 

  46. Escribano J, Pedreño MA, García-Carmona F et al (1998) Characterization of the antiradical activity of betalains from Beta vulgaris L. roots. Phytochem Anal 9(3):124–127

    Article  CAS  Google Scholar 

  47. Tesoriere L, Allegra M, Butera D et al (2004) Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: potential health effects of betalains in humans. Am J Clin Nutr 80(4):941–945

    CAS  Google Scholar 

  48. Jimenez-Alvarez D, Giuffrida F, Vanrobaeys F et al (2008) High-throughput methods to assess lipophilic and hydrophilic antioxidant capacity of food extracts in vitro. J Agric Food Chem 56(10):3470–3477

    Article  CAS  Google Scholar 

  49. Molan AL, De S, Meagher L (2009) Antioxidant activity and polyphenol content of green tea flavan-3-ols and oligomeric proanthocyanidins. Int J Food Sci Nutr 60(6):497–506

    Article  CAS  Google Scholar 

  50. Sreeramulu D, Raghunath M (2010) Antioxidant activity and phenolic content of roots, tubers and vegetables commonly consumed in India. Food Res Int 43(4):1017–1020

    Article  CAS  Google Scholar 

  51. Fu L, Xu BT, Xu XR et al (2011) Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem 129(2):345–350

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from Food and Drug administration projects (No.2009-385); Guang Dong Province Medicines Agency (No.2010415).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Qing Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, GL., Hu, K., Zhong, NJ. et al. Antioxidant capacities and total polyphenol content of nine commercially available tea juices measured by an in vitro digestion model. Eur Food Res Technol 236, 303–310 (2013). https://doi.org/10.1007/s00217-012-1897-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-012-1897-2

Keywords

Navigation