Skip to main content
Log in

Fast quantification of free amino acids in food by microfluidic voltage–assisted liquid desorption electrospray ionization–tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method based on microfluidic voltage–assisted liquid desorption electrospray ionization–tandem mass spectrometry (VAL-DESI-MS/MS) has been developed for fast quantification of free amino acids in food. Food extracts were transferred to the microfluidic platform and analyzed by liquid desorption ESI-MS/MS. Deuterated aspartic acid (i.e., 2,2,3-d3-Asp) was used as internal standard for analysis. The method had linear calibration curves with r2 values > 0.998. Limits of detection were at the level of sub μM for the amino acids tested, i.e., glutamic acid (Glu), arginine (Arg), tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe). To validate the proposed method in food analysis, extracts of Cordyceps fungi were analyzed. Amino acid contents were found in the range from 0.63 mg/g (Tyr in Cordyceps sinensis) to 4.44 mg/g (Glu in Cordyceps militaris). Assay repeatability (RSD) was ≤ 5.2% for all the five amino acids measured in all the samples analyzed. Recovery was found in the range from 95.8 to 105.1% at two spiking concentrations of 0.250 mg/g and 1.00 mg/g. These results prove that the proposed microfluidic VAL-DESI-MS/MS method offers a quick and convenient means of quantifying free amino acids with accuracy and repeatability. Therefore, it may have potential in food analysis for nutritional and quality assessment purposes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ha E, Zemel MB. Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people (review). J Nutr Biochem. 2003;14(5):251–8.

    Article  CAS  Google Scholar 

  2. Wu G. Functional amino acids in growth, reproduction, and health. Adv Nutr. 2010;1(1):31–7.

    Article  CAS  Google Scholar 

  3. Brosnan JT, Brosnan ME. Glutamate: a truly functional amino acid. Amino Acids. 2013;45(3):413–8.

    Article  CAS  Google Scholar 

  4. Dillon EL. Nutritionally essential amino acids and metabolic signaling in aging. Amino Acids. 2013;45(3):431–41.

    Article  CAS  Google Scholar 

  5. Wenefrida I, Utomo HS, Blanche SB, Linscombe SD. Enhancing essential amino acids and health benefit components in grain crops for improved nutritional values. Recent Pat DNA Gene Seq. 2009;3(3):219–25.

    Article  CAS  Google Scholar 

  6. Odriozola-Serrano I, Garde-Cerdán T, Soliva-Fortuny R, Martín-Belloso. Differences in free amino acid profile of nonthermally treated tomato and strawberry juices. J Food Compos Anal. 2013;32(1):51–8.

    Article  CAS  Google Scholar 

  7. Agostoni C, Carratù B, Boniglia C, Riva E, Sanzini E. Free amino acid content in standard infant formulas: comparison with human milk. J Am Coll Nutr. 2002;19(4):434–8.

    Article  Google Scholar 

  8. Ventura AK, San Gabriel A, Hirota M, Mennella JA. Free amino acid content in infant formulas. Nutr Food Sci. 2012;42(4):271–8.

    Article  Google Scholar 

  9. Gilani GS, Xiao C, Lee N. Need for accurate and standardized determination of amino acids and bioactive peptides for evaluating protein quality and potential health effects of foods and dietary supplements. J AOAC Int. 2008;91:894–900.

    Article  CAS  Google Scholar 

  10. Otter DE. Standardised methods for amino acid analysis of food. Br J Nutr. 2012;108:S230–7.

    Article  CAS  Google Scholar 

  11. Chace DH. Mass spectrometry in the clinical laboratory. Chem Rev. 2001;101(2):445–78.

    Article  CAS  Google Scholar 

  12. Husek P, Simek P. Alkyl chloroformates in sample derivatization strategies for GC analysis. Review on a decade use of the reagents as esterifying agents. Curr Pharm Anal. 2006;2(1):23–43.

    Article  CAS  Google Scholar 

  13. Kaspar H, Dettmer K, Gronwald W, Oefner PJ. Advances in amino acid analysis. Anal Bioanal Chem. 2009;393(2):445–52.

    Article  CAS  Google Scholar 

  14. Monton MRN, Soga T. Metabolome analysis by capillary electrophoresis –mass spectrometry. J Chromatogr A. 2007;1168:237–46.

    Article  CAS  Google Scholar 

  15. Rutherfurd SM, Dunn BM. Quantitative amino acid analysis. Curr Protoc Protein Sci. 2001;63:321–6.

    Google Scholar 

  16. Mudiam MKR, Ratnasekhar C. Ultra sound assisted one step rapid derivatization and dispersive liquid–liquid microextraction followed by gas chromatography-mass spectrometric determination of amino acids in complex matrices. J Chromatogr A. 2013;1291:10–8.

    Article  CAS  Google Scholar 

  17. Kıvrak I, Kıvrak S, Harmandar M. Free amino acid profiling in the giant puffball mushroom (Calvatia gigantea) using UPLC–MS/MS. Food Chem. 2014;158:88–92.

    Article  Google Scholar 

  18. Yan J, Cai Y, Wang Y, Lin X, Li H. Simultaneous determination of amino acids in tea leaves by micellar electrokinetic chromatography with laser-induced fluorescence detection. Food Chem. 2014;143:82–9.

    Article  CAS  Google Scholar 

  19. Armenta JM, Cortes D, Pisciotta JM, Shuman JL, Blakeslee K, Rasoloson D, et al. Sensitive and rapid method for amino acid quantification in malaria biological samples using AccQ-Tag Ultra performance liquid chromatography electrospray ionization –MS/MS with multiple reaction monitoring. Anal Chem. 2010;82:548–58.

    Article  CAS  Google Scholar 

  20. Guo S, Duan J, Qian D, Tang Y, Qian Y, Wu D, et al. Rapid determination of amino acids in fruits of Ziziphus jujuba by hydrophilic interaction ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry. J Agric Food Chem. 2013;61:2709–19.

    Article  CAS  Google Scholar 

  21. Gokmen V, Serpen A, Mogol BA. Rapid determination of amino acids in foods by hydrophilic interaction liquid chromatography coupled to high-resolution mass spectrometry. Anal Bioanal Chem. 2012;403(10):2915–22.

    Article  Google Scholar 

  22. Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471–3.

    Article  CAS  Google Scholar 

  23. Wiseman JM, Ifa DR, Song Q, Cooks RG. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew Chem Int Ed. 2006;45(43):7188–92.

    Article  CAS  Google Scholar 

  24. Laskin J, Heath BS, Roach PJ, Cazares L, Semmes O. Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal Chem. 2011;84(1):141–8.

    Article  Google Scholar 

  25. Venter AR, Douglass KA, Shelley JT, Hasman G Jr, Honarvar E. Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry. Anal Chem. 2014;86(1):233–49.

    Article  CAS  Google Scholar 

  26. Li X, Xu R, Wei X, Hu H, Zhao S, Liu YM. Direct analysis of biofluids by mass spectrometry with microfluidic voltage-assisted liquid desorption electrospray ionization. Anal Chem. 2017;89(22):12014–22.

    Article  CAS  Google Scholar 

  27. Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed. 2007;46(8):1318–20.

    Article  CAS  Google Scholar 

  28. Bruzewicz DA, Reches M, Whitesides M. Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Anal Chem. 2008;80(9):3387–92.

    Article  CAS  Google Scholar 

  29. Nge PN, Rogers CI, Woolley AT. Advances in microfluidic materials, functions, integration, and applications. Chem Rev. 2013;113(4):2550–83.

    Article  CAS  Google Scholar 

  30. Miao Z, Chen H. Direct analysis of liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS). J Am Soc Mass Spectrom. 2009;20(1):10–9.

    Article  CAS  Google Scholar 

  31. Zhang H, Bibi A, Lu H, Han J, Chen H. Comparative study on ambient ionization methods for direct analysis of navel orange tissues by mass spectrometry. J Mass Spectrom. 2017;52(8):526–33.

    Article  CAS  Google Scholar 

  32. Chen PX, Wang SA, Nie SP, Marcone M. Properties of Cordyceps sinensis: a review. J Funct Foods. 2013;5:550–69.

    Article  CAS  Google Scholar 

  33. Zhao J, Xie J, Wang L, Li S. Advanced development in chemical analysis of Cordyceps. J Pharm Biomed Anal. 2014;87:271–89.

    Article  CAS  Google Scholar 

  34. Wang J, Kan L, Nie S, Chen H, Cui SW, Phillips AO, et al. A comparison of chemical composition, bioactive components and antioxidant activity of natural and cultured Cordyceps sinensis. LWT Food Sci Technol. 2015;63:2–7.

    Article  CAS  Google Scholar 

  35. Mao XB, Eksriwong T, Chauvatcharin S, Zhong JJ. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochem. 2005;40:1667–72.

    Article  CAS  Google Scholar 

  36. Kim SW, Hwang HJ, Xu CP, Sung JM, Choi JW, Yun JW. Optimization of submerged culture process for the production of mycelial biomass and exo-polysaccharides by Cordyceps militaris C738. J Appl Microbiol. 2003;94:120–6.

    Article  Google Scholar 

  37. Dong JZ, Lei C, Ai XR, Wang Y. Selenium enrichment on Cordyceps militaris link and analysis on its main active components. Appl Biochem Biotechnol. 2012;166(5):1215–24.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Zhongnan Hospital of Wuhan University Science, Technology, and Innovation Seed Fund (znpy2017023 and znpy2018116 to HH), Traditional Chinese Medicine research project of Hubei Provincial Health Commission (ZY2019M033 to HH), and US National Institutes of Health (GM089557 to YML).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiancheng Tu or Yi-Ming Liu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Smith, S., Li, X. et al. Fast quantification of free amino acids in food by microfluidic voltage–assisted liquid desorption electrospray ionization–tandem mass spectrometry. Anal Bioanal Chem 412, 1947–1954 (2020). https://doi.org/10.1007/s00216-020-02450-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02450-w

Keywords

Navigation