Skip to main content
Log in

Development of methodology to generate, measure, and characterize the chemical composition of oxidized mercury nanoparticles

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 16 January 2020

This article has been updated

Abstract

The phase of oxidized mercury is critical in the fate, transformation, and bioavailability of mercury species in Earth’s ecosystem. There is now evidence that what is measured as gaseous oxidized mercury (GOM) is not only gaseous but also consists of airborne nanoparticles with distinct physicochemical properties. Herein, we present the development of the first method for the consistent and reproducible generation of oxidized mercury nano- and sub-micron particles (~ 5 to 400 nm). Oxidized mercury nanoparticles are generated using two methods, vapor-phase condensation and aqueous nebulization, for three proxies: mercury(II) bromide (HgBr2), mercury(II) chloride (HgCl2), and mercury(II) oxide (HgO). These aerosols are characterized using scanning mobility and optical sizing, high-resolution scanning transmission electron microscopy (STEM), and nano/microparticle interface coupled to soft ionization mercury mass spectrometric techniques. Synthetic nanoparticle stability was studied in aqueous media, and using a microcosm at ambient tropospheric conditions of ~ 740 Torr pressure, room temperature, and at relative humidity of approximately 20%. Analysis of microcosm airborne nanoparticles confirmed that generated synthetic mercury nanoparticles retain their physical properties once in air. KCl-coated denuders, which are currently used globally to measure gaseous mercury compounds, were exposed to generated oxidized mercury nanoparticles. The degree of synthetic mercury nanoparticle capture by KCl-coated denuders and particulate filters was assessed. A significant portion of nanoparticulate and sub-micron particulate mercury was trapped on the KCl-coated denuder and measured as GOM. Finally, we demonstrate the applicability of soft ionization mercury mass spectrometry to the measurement of mercury species present in the gaseous and solid phase. We recommend coupling of this technique with existing methodology for a more accurate representation of mercury biogeochemistry cycling.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 16 January 2020

    The authors would like to call the reader’s attention to the fact that, unfortunately, there was an unintentional oversight regarding the funding information in this manuscript; please find the correct information below.

  • 16 January 2020

    The authors would like to call the reader���s attention to the fact that, unfortunately, there was an unintentional oversight regarding the funding information in this manuscript; please find the correct information below.

References

  1. Malcolm EG, Ford AC, Redding TA, Richardson MC, Strain BM, Tetzner SW. Experimental investigation of the scavenging of gaseous mercury by sea salt aerosol. J Atmos Chem. 2010;63(3):221–34. https://doi.org/10.1007/s10874-010-9165-y.

    Article  CAS  Google Scholar 

  2. Denis MS, Song X, Lu JY, Feng X. Atmospheric gaseous elemental mercury in downtown Toronto. Atmos Environ. 2006;40(21):4016–24. https://doi.org/10.1016/j.atmosenv.2005.07.078.

    Article  CAS  Google Scholar 

  3. Cairns E, Tharumakulasingam K, Athar M, Yousaf M, Cheng I, Huang Y, et al. Source, concentration, and distribution of elemental mercury in the atmosphere in Toronto, Canada. Environ Pollut. 2011;159(8–9):2003–8. https://doi.org/10.1016/j.envpol.2010.12.006.

    Article  CAS  PubMed  Google Scholar 

  4. Deeds DA, Ghoshdastidar A, Raofie F, Guerette EA, Tessier A, Ariya PA. Development of a particle-trap preconcentration-soft ionization mass spectrometric technique for the quantification of mercury halides in air. Anal Chem. 2015;87(10):5109–16. https://doi.org/10.1021/ac504545w.

    Article  CAS  PubMed  Google Scholar 

  5. Seo Y-S, Han Y-J, Choi H-D, Holsen TM, Yi S-M. Characteristics of total mercury (TM) wet deposition: scavenging of atmospheric mercury species. Atmos Environ. 2012;49:69–76. https://doi.org/10.1016/j.atmosenv.2011.12.031.

    Article  CAS  Google Scholar 

  6. Xiao Z, Sommar J, Wei S, Lindqvist O. Sampling and determination of gas phase divalent mercury in the air using a KCl coated denuder. Fresen J Anal Chem. 1997;358(3):386–91. https://doi.org/10.1007/s002160050434.

    Article  CAS  Google Scholar 

  7. McClure CD, Jaffe DA, Edgerton ES. Evaluation of the KCl denuder method for gaseous oxidized mercury using HgBr2 at an in-service AMNet site. Environ Sci Technol. 2014;48(19):11437–44. https://doi.org/10.1021/es502545k.

    Article  CAS  PubMed  Google Scholar 

  8. Lyman SN, Jaffe DA, Gustin MS. Release of mercury halides from KCl denuders in the presence of ozone. Atmos Chem Phys. 2010;10(17):8197–204. https://doi.org/10.5194/acp-10-8197-2010.

    Article  CAS  Google Scholar 

  9. Huang JY, Miller MB, Weiss-Penzias P, Gustin MS. Comparison of gaseous oxidized Hg measured by KCl-coated denuders, and nylon and cation exchange membranes. Environ Sci Technol. 2013;47(13):7307–16. https://doi.org/10.1021/es4012349.

    Article  CAS  PubMed  Google Scholar 

  10. Landis MS, Stevens RK, Schaedlich F, Prestbo EM. Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air. Environ Sci Technol. 2002;36(13):3000–9. https://doi.org/10.1021/es015887t.

    Article  CAS  PubMed  Google Scholar 

  11. Lynam MM, Keeler GJ. Artifacts associated with the measurement of particulate mercury in an urban environment: the influence of elevated ozone concentrations. Atmos Environ. 2005;39(17):3081–8. https://doi.org/10.1016/j.atmosenv.2005.01.036.

    Article  CAS  Google Scholar 

  12. Pal B, Ariya PA. Studies of ozone initiated reactions of gaseous mercury: kinetics, product studies, and atmospheric implications. Phys Chem Chem Phys. 2004;6(3):572–9.

    Article  CAS  Google Scholar 

  13. Pal B, Ariya PA. Gas-phase HO•-initiated reactions of elemental mercury: kinetics, product studies, and atmospheric implications. Environ Sci Technol. 2004;38(21):5555–66. https://doi.org/10.1021/es0494353.

    Article  CAS  PubMed  Google Scholar 

  14. Ariya PA, Khalizov A, Gidas A. Reactions of gaseous mercury with atomic and molecular halogens: kinetics, product studies, and atmospheric implications. J Phys Chem A. 2002;106(32):7310–20. https://doi.org/10.1021/jp020719o.

    Article  CAS  Google Scholar 

  15. Gustin M, Jaffe D. Reducing the uncertainty in measurement and understanding of mercury in the atmosphere. Environ Sci Technol. 2010;44(7):2222–7. https://doi.org/10.1021/es902736k.

    Article  CAS  PubMed  Google Scholar 

  16. Yang H (2002) Effects of fly ash on the oxidation of mercury during post-combustion conditions.

  17. Kos G, Ryzhkov A, Dastoor A, Narayan J, Steffen A, Ariya PA, et al. Evaluation of discrepancy between measured and modelled oxidized mercury species. Atmos Chem Phys. 2013;13(9):4839–63. https://doi.org/10.5194/acp-13-4839-2013.

    Article  CAS  Google Scholar 

  18. Raofie F, Ariya PA. Product study of the gas-phase BrO-initiated oxidation of Hg0: evidence for stable Hg1+ compounds. Environ Sci Technol. 2004;38(16):4319–26.

    Article  CAS  Google Scholar 

  19. Feng XB, Lu JY, Gregoire DC, Hao YJ, Banic CM, Schroeder WH. Analysis of inorganic mercury species associated with airborne particulate matter/aerosols: method development. Anal Bioanal Chem. 2004;380(4):683–9. https://doi.org/10.1007/s00216-004-2803-y.

    Article  CAS  PubMed  Google Scholar 

  20. Pyta H, Rogula-Kozlowska W. Determination of mercury in size-segregated ambient particulate matter using CVAAS. Microchem J. 2016;124:76–81. https://doi.org/10.1016/j.microc.2015.08.001.

    Article  CAS  Google Scholar 

  21. Malcolm EG, Keeler GJ. Evidence for a sampling artifact for particulate-phase mercury in the marine atmosphere. Atmos Environ. 2007;41(16):3352–9. https://doi.org/10.1016/j.atmosenv.2006.12.024.

    Article  CAS  Google Scholar 

  22. Murphy DM, Thomson DS, Mahoney MJ. In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers. Science. 1998;282(5394):1664–9. https://doi.org/10.1126/science.282.5394.1664.

    Article  CAS  PubMed  Google Scholar 

  23. Marusczak N, Sonke JE, Fu X, Jiskra M. Tropospheric GOM at the pic du Midi observatory-correcting bias in denuder based observations. Environ Sci Technol. 2016. https://doi.org/10.1021/acs.est.6b04999.

    Article  Google Scholar 

  24. Nazarenko Y, Rangel-Alvarado RB, Kos G, Kurien U, Ariya PA. Novel aerosol analysis approach for characterization of nanoparticulate matter in snow. Environ Sci Pollut Res. 2016:1–14. https://doi.org/10.1007/s11356-016-8199-3.

    Article  Google Scholar 

  25. Mohadesi A, Ranjbar M, Hosseinpour-Mashkani SM. Solvent-free synthesis of mercury oxide nanoparticles by a simple thermal decomposition method. Superlattice Microst. 2014;66:48–53. https://doi.org/10.1016/j.spmi.2013.11.017.

    Article  CAS  Google Scholar 

  26. Liu J, Pui DYH, Wang J. Removal of airborne nanoparticles by membrane coated filters. Sci Total Environ. 2011;409(22):4868–74. https://doi.org/10.1016/j.scitotenv.2011.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghoshdastidar AJ, Ariya PA. The existence of airborne mercury nanoparticles. Sci Rep-Uk. 2019;9(1):10733. https://doi.org/10.1038/s41598-019-47086-8.

    Article  CAS  Google Scholar 

  28. Jen YH, Chen WH, Yuan CS, Ie IR, Hung CH. Seasonal variation and spatial distribution of atmospheric mercury and its gas-particulate partition in the vicinity of a semiconductor manufacturing complex. Environ Sci Pollut Res. 2014;21(8):5474–83. https://doi.org/10.1007/s11356-013-2441-z.

    Article  CAS  Google Scholar 

  29. Subir M, Ariya PA, Dastoor AP. A review of the sources of uncertainties in atmospheric mercury modeling II. Mercury surface and heterogeneous chemistry - a missing link. Atmos Environ. 2012;46:1–10. https://doi.org/10.1016/j.atmosenv.2011.07.047.

    Article  CAS  Google Scholar 

  30. Seinfeld JH, Pandis SN. Atmospheric chemistry and physics: from air pollution to climate change: John Wiley & Sons; 2012.

  31. Grassian VH. When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments†. J Phys Chem C. 2008;112(47):18303–13. https://doi.org/10.1021/jp806073t.

    Article  CAS  Google Scholar 

  32. Murphy DM, Hudson PK, Thomson DS, Sheridan PJ, Wilson JC. Observations of mercury-containing aerosols. Environ Sci Technol. 2006;40(10):3163–7. https://doi.org/10.1021/es052385x.

    Article  CAS  PubMed  Google Scholar 

  33. Si L, Ariya PA. Photochemical reactions of divalent mercury with thioglycolic acid: formation of mercuric sulfide particles. Chemosphere. 2015;119:467–72. https://doi.org/10.1016/j.chemosphere.2014.07.022.

    Article  CAS  PubMed  Google Scholar 

  34. Pham AL-T, Morris A, Zhang T, Ticknor J, Levard C, Hsu-Kim H. Precipitation of nanoscale mercuric sulfides in the presence of natural organic matter: structural properties, aggregation, and biotransformation. Geochim Cosmochim Acta. 2014;133(0):204–15. https://doi.org/10.1016/j.gca.2014.02.027.

    Article  CAS  Google Scholar 

  35. Ariya PA, Amyot M, Dastoor A, Deeds D, Feinberg A, Kos G, et al. Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: a review and future directions. Chem Rev. 2015;115(10):3760–802. https://doi.org/10.1021/cr500667e.

    Article  CAS  PubMed  Google Scholar 

  36. Mwilu SK, El Badawy AM, Bradham K, Nelson C, Thomas D, Scheckel KG, et al. Changes in silver nanoparticles exposed to human synthetic stomach fluid: effects of particle size and surface chemistry. Sci Total Environ. 2013;447(0):90–8. https://doi.org/10.1016/j.scitotenv.2012.12.036.

    Article  CAS  PubMed  Google Scholar 

  37. Mazrui Nashaat M, Seelen E, King'ondu CK, Thota S, Awino J, Rouge J, et al. The precipitation, growth and stability of mercury sulfide nanoparticles formed in the presence of marine dissolved organic matter. Environ Sci Process Impacts. 2018;20(4):642–56. https://doi.org/10.1039/C7EM00593H.

    Article  PubMed  Google Scholar 

  38. Sinha A, Khare SK. Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresour Technol. 2011;102(5):4281–4. https://doi.org/10.1016/j.biortech.2010.12.040.

    Article  CAS  PubMed  Google Scholar 

  39. Clever HL, Johnson SA, Derrick ME. The solubility of mercury and some sparingly soluble mercury salts in water and aqueous electrolyte solutions. J Phys Chem Ref Data. 1985;14(3):631–80. https://doi.org/10.1063/1.555732.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Hojatollah Vali and David Liu of the Facility for Electron Microscopy Research and also acknowledge Dr. Janusz Rak and Laura Montermini at the Montreal Children’s Hospital for the use of the Nanosight NS500.

Funding information

This study received financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Foundation for Innovation (CFI), Le Fonds de recherche du Québec – Nature et technologies (FRQNT), Environment and Climate Change Canada, McGill University, and the Walter C. Sumner Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa A. Ariya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 3407 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoshdastidar, A.J., Ramamurthy, J., Morissette, M. et al. Development of methodology to generate, measure, and characterize the chemical composition of oxidized mercury nanoparticles. Anal Bioanal Chem 412, 691–702 (2020). https://doi.org/10.1007/s00216-019-02279-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02279-y

Keywords

Navigation