Skip to main content
Log in

Luminescent nanomaterials for droplet tracking in a microfluidic trapping array

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of high-throughput multiplexed screening platforms has attracted significant interest in the field of on-site disease detection and diagnostics for their capability to simultaneously interrogate single-cell responses across different populations. However, many of the current approaches are limited by the spectral overlap between tracking materials (e.g., organic dyes) and commonly used fluorophores/biochemical stains, thus restraining their applications in multiplexed studies. This work demonstrates that the downconversion emission spectra offered by rare earth (RE)-doped β-hexagonal NaYF4 nanoparticles (NPs) can be exploited to address this spectral overlap issue. Compared to organic dyes and other tracking materials where the excitation and emission is separated by tens of nanometers, RE elements have a large gap between excitation and emission which results in their spectral independence from the organic dyes. As a proof of concept, two differently doped NaYF4 NPs (europium: Eu3+, and terbium: Tb3+) were employed on a fluorescent microscopy-based droplet microfluidic trapping array to test their feasibility as spectrally independent droplet trackers. The luminescence tracking properties of Eu3+-doped (red emission) and Tb3+-doped (green emission) NPs were successfully characterized by co-encapsulating with genetically modified cancer cell lines expressing green or red fluorescent proteins (GFP and RFP) in addition to a mixed population of live and dead cells stained with ethidium homodimer. Detailed quantification of the luminescent and fluorescent signals was performed to confirm no overlap between each of the NPs and between NPs and cells. Thus, the spectral independence of Eu3+-doped and Tb3+-doped NPs with each other and with common fluorophores highlights the potential application of this novel technique in multiplexed systems, where many such luminescent NPs (other doped and co-doped NPs) can be used to simultaneously track different input conditions on the same platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saadatpour A, Lai S, Guo G, Yuan G-C. Single-cell analysis in cancer genomics. Trends Genet. 2015;31(10):576–86. https://doi.org/10.1016/j.tig.2015.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tellez-Gabriel M, Ory B, Lamoureux F, Heymann M-F, Heymann D. Tumour heterogeneity: the key advantages of single-cell analysis. Int J Mol Sci. 2016;17(12):2142. https://doi.org/10.3390/ijms17122142.

    Article  CAS  PubMed Central  Google Scholar 

  3. Tsoucas D, Yuan G-C. Recent progress in single-cell cancer genomics. Curr Opin Genet Dev. 2017;42:22–32. https://doi.org/10.1016/j.gde.2017.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schneider T, Kreutz J, Chiu DT. The potential impact of droplet microfluidics in biology. Anal Chem. 2013;85(7):3476–82. https://doi.org/10.1021/ac400257c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shang L, Cheng Y, Zhao Y. Emerging droplet microfluidics. Chem Rev. 2017;117(12):7964–8040. https://doi.org/10.1021/acs.chemrev.6b00848.

    Article  CAS  PubMed  Google Scholar 

  6. Newell EW, Cheng Y. Mass cytometry: blessed with the curse of dimensionality. Nat Immunol. 2016;17:890. https://doi.org/10.1038/ni.3485.

    Article  CAS  PubMed  Google Scholar 

  7. O'Donnell EA, Ernst DN, Hingorani R. Multiparameter flow cytometry: advances in high resolution analysis. Immune Netw. 2013;13(2):43–54. https://doi.org/10.4110/in.2013.13.2.43.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wyatt Shields Iv C, Reyes CD, Lopez GP. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip. 2015;15(5):1230–49. https://doi.org/10.1039/C4LC01246A.

    Article  CAS  Google Scholar 

  9. Hu P, Zhang W, Xin H, Deng G. Single cell isolation and analysis. Front Cell Dev Biol. 2016;4:116. https://doi.org/10.3389/fcell.2016.00116.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell. 2016;165(4):780–91. https://doi.org/10.1016/j.cell.2016.04.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chattopadhyay PK, Gierahn TM, Roederer M, Love JC. Single-cell technologies for monitoring immune systems. Nat Immunol. 2014;15(2):128–35. https://doi.org/10.1038/ni.2796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou Y, Basu S, Wohlfahrt KJ, Lee SF, Klenerman D, Laue ED, et al. A microfluidic platform for trapping, releasing and super-resolution imaging of single cells. Sensors Actuator B Chem. 2016;232:680–91. https://doi.org/10.1016/j.snb.2016.03.131.

    Article  CAS  Google Scholar 

  13. Holton AB, Sinatra FL, Kreahling J, Conway AJ, Landis DA, Altiok S. Microfluidic biopsy trapping device for the real-time monitoring of tumor microenvironment. PLoS One. 2017;12(1):e0169797. https://doi.org/10.1371/journal.pone.0169797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc. 2017;12(1):44–73. https://doi.org/10.1038/nprot.2016.154.

    Article  CAS  PubMed  Google Scholar 

  15. Ma J, Zhan L, Li RS, Gao PF, Huang CZ. Color-encoded assays for the simultaneous quantification of dual cancer biomarkers. Anal Chem. 2017;89(16):8484–9. https://doi.org/10.1021/acs.analchem.7b02033.

    Article  CAS  PubMed  Google Scholar 

  16. Lan F, Haliburton JR, Yuan A, Abate AR. Droplet barcoding for massively parallel single-molecule deep sequencing. Nat Commun. 2016;7:11784. https://doi.org/10.1038/ncomms11784.https://www.nature.com/articles/ncomms11784#supplementary-information.

  17. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187–201. https://doi.org/10.1016/j.cell.2015.04.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen C-H, Miller MA, Sarkar A, Beste MT, Isaacson KB, Lauffenburger DA, et al. Multiplexed protease activity assay for low volume clinical samples using droplet based microfluidics and its application to endometriosis. J Am Chem Soc. 2013;135(5):1645–8. https://doi.org/10.1021/ja307866z.

    Article  CAS  PubMed  Google Scholar 

  19. Rane TD, Zec HC, Wang TH. A barcode-free combinatorial screening platform for matrix metalloproteinase screening. Anal Chem. 2015;87(3):1950–6. https://doi.org/10.1021/ac504330x.

    Article  CAS  PubMed  Google Scholar 

  20. Fan J, Hu M, Zhan P, Peng X. Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chem Soc Rev. 2013;42(1):29–43. https://doi.org/10.1039/C2CS35273G.

    Article  CAS  PubMed  Google Scholar 

  21. Abdel-Mottaleb MMA, Beduneau A, Pellequer Y, Lamprecht A. Stability of fluorescent labels in PLGA polymeric nanoparticles: quantum dots versus organic dyes. Int J Pharm. 2015;494(1):471–8. https://doi.org/10.1016/j.ijpharm.2015.08.050.

    Article  CAS  PubMed  Google Scholar 

  22. Montón H, Nogués C, Rossinyol E, Castell O, Roldán M. QDs versus Alexa: reality of promising tools for immunocytochemistry. J Nanobiotechnol. 2009;7(1):4. https://doi.org/10.1186/1477-3155-7-4.

    Article  CAS  Google Scholar 

  23. Wen C-Y, Xie H-Y, Zhang Z-L, Wu L-L, Hu J, Tang M, et al. Fluorescent/magnetic micro/nano-spheres based on quantum dots and/or magnetic nanoparticles: preparation, properties, and their applications in cancer studies. Nanoscale. 2016;8(25):12406–29. https://doi.org/10.1039/C5NR08534A.

    Article  CAS  Google Scholar 

  24. Leng Y, Wu W, Li L, Lin K, Sun K, Chen X, et al. Magnetic/fluorescent barcodes based on cadmium-free near-infrared-emitting quantum dots for multiplexed detection. Adv Funct Mater. 2016;26(42):7581–9. https://doi.org/10.1002/adfm.201602900.

    Article  CAS  Google Scholar 

  25. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22:969. https://doi.org/10.1038/nbt994.https://www.nature.com/articles/nbt994#supplementary-information.

  26. Duan N, Wu S, Yu Y, Ma X, Xia Y, Chen X, et al. A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels. Anal Chim Acta. 2013;804:151–8. https://doi.org/10.1016/j.aca.2013.09.047.

    Article  CAS  PubMed  Google Scholar 

  27. Buranda T, Wu Y, Sklar LA. Quantum dots for quantitative flow cytometry. Methods Mol Biol. 2011;699:67–84. https://doi.org/10.1007/978-1-61737-950-5_4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ghrera AS, Pandey CM, Ali MA, Malhotra BD. Quantum dot-based microfluidic biosensor for cancer detection. Appl Phys Lett. 2015;106(19):193703. https://doi.org/10.1063/1.4921203.

    Article  CAS  Google Scholar 

  29. Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev. 2015;44(14):4792–834. https://doi.org/10.1039/C4CS00532E.

    Article  CAS  PubMed  Google Scholar 

  30. Gai SL, Li CX, Yang PP, Lin J. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev. 2014;114(4):2343–89. https://doi.org/10.1021/cr4001594.

    Article  CAS  PubMed  Google Scholar 

  31. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5:763. https://doi.org/10.1038/nmeth.1248.https://www.nature.com/articles/nmeth.1248#supplementary-information.

  32. Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, et al. Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev. 2015;115(19):10725–815. https://doi.org/10.1021/acs.chemrev.5b00091.

    Article  CAS  PubMed  Google Scholar 

  33. Haase M, Schafer H. Upconverting nanoparticles. Angew Chem Int Ed. 2011;50(26):5808–29. https://doi.org/10.1002/anie.201005159.

    Article  CAS  Google Scholar 

  34. Eliseeva SV, Bunzli JCG. Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev. 2010;39(1):189–227. https://doi.org/10.1039/b905604c.

    Article  CAS  PubMed  Google Scholar 

  35. Oliveira E, Bértolo E, Núñez C, Pilla V, Santos HM, Fernández-Lodeiro J, et al. Green and red fluorescent dyes for translational applications in imaging and sensing analytes: a dual-color flag. ChemistryOpen. 2018;7(1):9–52. https://doi.org/10.1002/open.201700135.

    Article  CAS  PubMed  Google Scholar 

  36. Lee H, Park HJ, Park C-S, Oh E-T, Choi B-H, Williams B, et al. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined. PLoS One. 2014;9(2):e87979. https://doi.org/10.1371/journal.pone.0087979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou J, Liu Q, Feng W, Sun Y, Li F. Upconversion luminescent materials: advances and applications. Chem Rev. 2015;115(1):395–465. https://doi.org/10.1021/cr400478f.

    Article  CAS  PubMed  Google Scholar 

  38. Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev. 2014;114(10):5161–214. https://doi.org/10.1021/cr400425h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li CX, Yang J, Quan ZW, Yang PP, Kong DY, Lin J. Different microstructures of ss-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources. Chem Mater. 2007;19(20):4933–42. https://doi.org/10.1021/cm071668g.

    Article  CAS  Google Scholar 

  40. Wang F, Liu XG. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev. 2009;38(4):976–89. https://doi.org/10.1039/b809132n.

    Article  CAS  PubMed  Google Scholar 

  41. Dorman JA, Choi JH, Kuzmanich G, Bargar JR, Chang JP. Optimizing the crystal environment through extended x-ray absorption fine structure to increase the luminescent lifetimes of Er3+ doped Y2O3 nanoparticles. J Appl Phys. 2012;111(8). https://doi.org/10.1063/1.3702789.

  42. Sabnis A, Rahimi M, Chapman C, Nguyen KT. Cytocompatibility studies of an in situ photopolymerized thermoresponsive hydrogel nanoparticle system using human aortic smooth muscle cells. J Biomed Mater Res Part B Appl Biomater. 2009;91(1):52–9. https://doi.org/10.1002/jbm.a.32194.

    Article  Google Scholar 

  43. Wong DY, Ranganath T, Kasko AM. Low-dose, long-wave UV light does not affect gene expression of human mesenchymal stem cells. PLoS One. 2015;10(9):e0139307. https://doi.org/10.1371/journal.pone.0139307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Naczynski DJ, Tan MC, Zevon M, Wall B, Kohl J, Kulesa A, et al. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat Commun. 2013;4:2199. https://doi.org/10.1038/ncomms3199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang NJ, Hinner MJ. Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol Bio. 2015;1266:29–53. https://doi.org/10.1007/978-1-4939-2272-7_3.

    Article  CAS  Google Scholar 

  46. Wu P, Yan X-P. Doped quantum dots for chemo/biosensing and bioimaging. Chem Soc Rev. 2013;42(12):5489–521. https://doi.org/10.1039/C3CS60017C.

    Article  CAS  PubMed  Google Scholar 

  47. Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng. 2005;7:55–76. https://doi.org/10.1146/annurev.bioeng.7.060804.100432.

    Article  CAS  PubMed  Google Scholar 

  48. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol. 2002;13(1):40–6. https://doi.org/10.1016/S0958-1669(02)00282-3.

    Article  CAS  PubMed  Google Scholar 

  49. Collins DJ, Neild A, deMello A, Liu A-Q, Ai Y. The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab Chip. 2015;15(17):3439–59. https://doi.org/10.1039/C5LC00614G.

    Article  CAS  PubMed  Google Scholar 

  50. Kern KM, Schroeder JR. Comparison of cantharidin toxicity in breast cancer cells to two common chemotherapeutics. Int J Breast Cancer. 2014;2014:423059. https://doi.org/10.1155/2014/423059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Muluneh M, Kim B, Buchsbaum G, Issadore D. Miniaturized, multiplexed readout of droplet-based microfluidic assays using time-domain modulation. Lab Chip. 2014;14(24):4638–46. https://doi.org/10.1039/C4LC00819G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gu S-Q, Zhang Y-X, Zhu Y, Du W-B, Yao B, Fang Q. Multifunctional picoliter droplet manipulation platform and its application in single cell analysis. Anal Chem. 2011;83(19):7570–6. https://doi.org/10.1021/ac201678g.

    Article  CAS  PubMed  Google Scholar 

  53. Bui M-PN, Li CA, Han KN, Choo J, Lee EK, Seong GH. Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient. Anal Chem. 2011;83(5):1603–8. https://doi.org/10.1021/ac102472a.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute of Biomedical Imaging and Bioengineering, R03EB02935 (ATM); the National Science Foundation, CBET1509713 (ATM); and the Louisiana Board of Regents, LEQSF (2016-19)-RD-A-03 (JAD/PD). The authors would like to thank Dr. Nancy Albritton (University of North Carolina) for providing the GFP-expressing HeLa cells and Dr. Elizabeth Martin (LSU) for providing the MDA-MB-231 cells and RFP-expressing MDA-MB-231 cells. The authors would like to thank Riad Elkhanoufi (LSU) for the assistance with device fabrication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James A. Dorman or Adam T. Melvin.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 638 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaithiyanathan, M., R. Bajgiran, K., Darapaneni, P. et al. Luminescent nanomaterials for droplet tracking in a microfluidic trapping array. Anal Bioanal Chem 411, 157–170 (2019). https://doi.org/10.1007/s00216-018-1448-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1448-1

Keywords

Navigation