Skip to main content
Log in

Study of the degradation of a multidrug transporter using a non-radioactive pulse chase method

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Proteins are constantly synthesized and degraded in living cells during their growth and division, often in response to metabolic and environmental conditions. The synthesis and breakdown of proteins under different conditions reveal information about their mechanism of function. The metabolic incorporation of non-natural amino acid azidohomoalanine (AHA) and subsequent labeling via click chemistry emerged as a non-radioactive strategy useful in the determination of protein kinetics and turnover. We used the method to monitor the degradation of two proteins involved in the multidrug efflux in Escherichia coli, the inner membrane transporter AcrB and its functional partner membrane fusion protein AcrA. Together they form a functional complex with an outer membrane channel TolC to actively transport various small molecule compounds out of E. coli cells. We found that both AcrA and AcrB lasted for approximately 6 days in live E. coli cells, and the stability of AcrB depended on the presence of AcrA but not on active efflux. These results lead to new insight into the multidrug resistance in Gram-negative bacteria conferred by efflux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goldberg A, ST. John A. Annu Rev Biochem. 1976;45:747–803.

    Article  CAS  Google Scholar 

  2. Mayer R, Doherty F. FEBS Lett. 1986;198:181–93.

    Article  CAS  Google Scholar 

  3. Dice JF. FASEB J. 1987;1:349–57.

    CAS  Google Scholar 

  4. Simon E, Kornitzer D. Methods Enzymol. 2014;536:65–75.

    Article  CAS  Google Scholar 

  5. Martell J, Weerapana E. Molecules. 2014;19:1378–93.

    Article  Google Scholar 

  6. Avti PK, Maysinger D, Kakkar A. Molecules. 2013;18:9531–49.

    Article  CAS  Google Scholar 

  7. Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. Environ Microbiol. 2014;16:2568–90.

    Article  CAS  Google Scholar 

  8. Dieck ST, Kochen L, Hanus C, Heumüller M, Bartnik I, Nassim-Assir B, et al. Nat Methods. 2015;12:411–4.

    Article  Google Scholar 

  9. Link AJ, Tirrell DA. J Am Chem Soc. 2003;125:11164–5.

    Article  CAS  Google Scholar 

  10. Simon M, Stefan N, Borsig L, Pluckthun A, Zangemeister-Wittke U. Mol Cancer Ther. 2014;13:375–85.

    Article  CAS  Google Scholar 

  11. McClatchy DB, Ma YH, Liu C, Stein BD, Martinez-Bartolome S, Vasquez D, et al. J Proteome Res. 2015;14:4815–22.

    Article  CAS  Google Scholar 

  12. Dieterich DC, Hodas JJL, Gouzer G, Shadrin IY, Ngo JT, Triller A, et al. Nat Neurosci. 2010;13:897–905.

    Article  CAS  Google Scholar 

  13. Deal RB, Henikoff JG, Henikoff S. Science. 2010;328:1161–4.

    Article  CAS  Google Scholar 

  14. Hiroshi N, Yumiko R. Biochim Biophys Acta, Proteins Proteomics. 2009;1794:769–81.

    Article  Google Scholar 

  15. Koronakis V, Eswaran J, Hughes C. Annu Rev Biochem. 2004;73:467–89.

    Article  CAS  Google Scholar 

  16. Li XZ, Poole K, Nikaido H. Antimicrob Agents Chemother. 2003;47:27–33.

    Article  CAS  Google Scholar 

  17. Lu W, Zhong M, Wei Y. Protein Pept Lett. 2011;18:863–71.

    Article  CAS  Google Scholar 

  18. Lu W, Chai Q, Zhong M, Yu L, Fang J, Wang T, et al. J Mol Biol. 2012;423:123–34.

    Article  CAS  Google Scholar 

  19. Link AJ, Vink MK, Tirrell DA. J Am Chem Soc. 2004;126:10598–602.

    Article  CAS  Google Scholar 

  20. Chai Q, Wang Z, Webb S, Dutch RE, Wei Y. Biochemistry. 2016;5:2301–4.

    Article  Google Scholar 

  21. Hinz FI, Dieterich DC, Tirrell DA, Schuman EM. ACS Chem Neurosci. 2012;3:40–9.

    Article  CAS  Google Scholar 

  22. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew Chem Int Ed Engl. 2002;41:2596–9.

    Article  CAS  Google Scholar 

  23. Rosenberg EY, Bertenthal D, Nilles ML, Bertrand KP, Nikaido H. Mol Microbiol. 2003;48:1609–19.

    Article  CAS  Google Scholar 

  24. Su CC, Li M, Gu R, Takatsuka Y, McDermott G, Nikaido H, et al. J Bacteriol. 2006;188:7290–6.

    Article  CAS  Google Scholar 

  25. Belle A, Tanay A, Bitincka L, Shamir R, O’Shea EK. Proc Natl Acad Sci U S A. 2006;103:13004–9.

    Article  CAS  Google Scholar 

  26. Cambridge SB, Gnad F, Nguyen C, Bermejo JL, Krüger M, Mann M. J Proteome Res. 2011;10:5275–84.

    Article  CAS  Google Scholar 

  27. Yen HC, Xu Q, Chou DM, Zhao Z, Elledge SJ. Science. 2008;322:918–23.

    Article  CAS  Google Scholar 

  28. Willetts NS. Biochem J. 1967;103:453–61.

    Article  CAS  Google Scholar 

  29. Koch AL, Levy HR. J Biol Chem. 1955;217:947–57.

    CAS  Google Scholar 

  30. Luscombe M, Phelps CF. Biochem J. 1967;102:110–9.

    Article  CAS  Google Scholar 

  31. Borek E, Ponticorvo L, Rittenberg D. Proc Natl Acad Sci U S A. 1958;44:369–74.

    Article  CAS  Google Scholar 

  32. Larrabee KL, Phillips JO, Williams GJ, Larrabee AR. J Biol Chem. 1980;255:4125–30.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (MCB 1158036, YW) and National Institute of Allergy and Infectious Diseases (1R21AI103717, YW; R01 AI051517, RED; and F31 fellowship AI120653-01, SRW). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinan Wei.

Ethics declarations

Conflicts of interest

The authors declare that they have no potential conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, Q., Webb, S.R., Wang, Z. et al. Study of the degradation of a multidrug transporter using a non-radioactive pulse chase method. Anal Bioanal Chem 408, 7745–7751 (2016). https://doi.org/10.1007/s00216-016-9871-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9871-7

Keywords

Navigation