Skip to main content
Log in

Tip-enhanced Raman spectroscopic imaging shows segregation within binary self-assembled thiol monolayers at ambient conditions

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Phase segregation of coadsorbed thiol molecules on a gold surface was investigated with nanoscale chemical imaging using tip-enhanced Raman spectroscopy (TERS). Samples were prepared using mixed solutions containing thiophenol (PhS) and an oligomeric phenylene-ethynylene (OPE) thiol, with 10:1, 2:1, and 1:1 molar ratios. Phase segregation into domains with sizes from ≈30 to 240 nm is observed with these molar ratios. A comparison of TERS images with different pixel sizes indicates that a pixel size bigger than 15 nm is not reliable in defining nanodomains, because of undersampling. In this study, the formation of nanodomains was clearly evident based on the molecular fingerprints provided by TERS, while ambient scanning tunneling microscopy (STM) was not capable of discerning individual domains via their apparent height difference. TERS therefore allows to image nanodomains in binary self-assembled monolayers, which are invisible to methods solely relying on topographic or electron density characteristics of self-assembled monolayers. Moreover, TERS mapping provides statistical data to describe the distribution of molecules on the sample surface in a well-defined manner. Peak ratio histograms of selected TERS signals from samples prepared with different mixing ratios give a better understanding of the adsorption preference of the thiols studied, and the relationship of their mixing ratio in solution and adsorbed on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Whitesides GM, Kriebel JK, Love JC (2005) Molecular engineering of surfaces using self-assembled monolayers. Sci Prog 88(1):17–48

    Article  Google Scholar 

  2. Love JC, Estroff LA, Kriebel JK et al (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170

    Article  CAS  Google Scholar 

  3. Thuo MM, Reus WF, Nijhuis CA, Barber JR, Kim C, Schulz MD, Whitesides GM (2011) Odd–even effects in charge transport across self-assembled monolayers. J Am Chem Soc 133(9):2962–2975

    Article  CAS  Google Scholar 

  4. Stewart A, Zheng S, McCourt MR, Bell SEJ (2012) Controlling assembly of mixed thiol monolayers on silver nanoparticles to tune their surface properties. ACS Nano 6:3718–3726

    Article  CAS  Google Scholar 

  5. Wu K-Y, Yu S-Y, Tao Y-T (2009) Continuous modulation of electrode work function with mixed self-assembled monolayers and its effect in charge injection. Langmuir 25:6232–6238

    Article  CAS  Google Scholar 

  6. Kim J, Rim YS, Liu Y et al (2014) Interface control in organic electronics using mixed monolayers of carboranethiol isomers. Nano Lett 14:2946–2951

    Article  CAS  Google Scholar 

  7. Hung A, Mwenifumbo S, Mager M et al (2011) Ordering surfaces on the nanoscale: implications for protein adsorption. J Am Chem Soc 133:1438–1450

    Article  CAS  Google Scholar 

  8. Hobara D, Imabayashi S-I, Kakiuchi T (2002) Preferential adsorption of horse heart cytochrome con nanometer-scale domains of a phase-separated binary self-assembled monolayer of 3-mercaptopropionic acid and 1-hexadecanethiol on Au(111). Nano Lett 2:1021–1025

    Article  CAS  Google Scholar 

  9. Smith RK, Reed SM, Lewis PA et al (2001) Phase separation within a binary self-assembled monolayer on Au{111} driven by an amide-containing alkanethiol. J Phys Chem B 105:1119–1122

    Article  CAS  Google Scholar 

  10. Qi Y, Liu X, Hendriksen BLM et al (2010) Influence of molecular ordering on electrical and friction properties of ω-(trans-4-stilbene)alkylthiol self-assembled monolayers on Au (111). Langmuir 26:16522–16528

    Article  CAS  Google Scholar 

  11. Stranick SJ, Atre SV, Parikh AN, Wood MC, Allara DL, Winograd N, Weiss PS (1997) Nanometer-scale phase separation in mixed composition self-assembled monolayers. 1–6

  12. Hayes WA, Kim H, Yue X, Perry SS, Shannon C (1997) Nanometer-scale patterning of surfaces using self-assembly chemistry. 2. Preparation, characterization, and electrochemical behavior of two-component organothiol monolayers on gold surfaces. Langmuir 13:2511–2518

    Article  CAS  Google Scholar 

  13. Poirier GE (1997) Characterization of organosulfur molecular monolayers on Au(111) using scanning tunneling microscopy. Chem Rev 97:1117–1127

    Article  CAS  Google Scholar 

  14. Schaefer AH, Seidel C, Chi L, Fuchs H (1998) STM investigations of thiol self-assembled monolayers. Adv Mater 10:839–842

    Article  CAS  Google Scholar 

  15. Stadler J, Schmid T, Opilik L, Kuhn P, Dittrich PS, Zenobi R (2011) Tip-enhanced Raman spectroscopic imaging of patterned thiol monolayers. Beilstein J Nanotechnol 2:509

    Article  CAS  Google Scholar 

  16. Wang DW, Tian F, Lu JG (2002) Characterization of self-assembled alkanethiol monolayers using a low-current scanning tunneling microscope. J Vac Sci Technol B 20:60–64

    Article  CAS  Google Scholar 

  17. Mannsfeld SCB, Canzler TW, Fritz T et al (2002) The structure of [4-(phenylazo)phenoxy]hexane-1-thiol self-assembled monolayers on Au(111). J Phys Chem B 106:2255–2260

    Article  CAS  Google Scholar 

  18. Donten ML, Królikowska A, Bukowska J (2009) Structure and composition of binary monolayers self-assembled from sodium 2-mercaptoetanosulfonate and mercaptoundecanol mixed solutions on silver and gold supports. Phys Chem Chem Phys 11:3390–3400

    Article  CAS  Google Scholar 

  19. Centrone A, Hu Y, Jackson AM et al (2007) Phase separation on mixed-monolayer-protected metal nanoparticles: a study by infrared spectroscopy and scanning tunneling microscopy. Small 3:814–817

    Article  CAS  Google Scholar 

  20. Gentilini C, Franchi P, Mileo E et al (2009) Formation of patches on 3D SAMs driven by thiols with immiscible chains observed by ESR spectroscopy. Angew Chem 121:3106–3110

    Article  Google Scholar 

  21. Bain CD, Whitesides GM (1998) Science 240:6243

    Google Scholar 

  22. Harkness KM, Balinski A, McLean JA, Cliffel DE (2011) Nanoscale phase segregation of mixed thiolates on gold nanoparticles. Angew Chem Int Ed 50:10554–10559

    Article  CAS  Google Scholar 

  23. Lipiec E, Sekine R, Bielecki J et al (2013) Molecular characterization of DNA double strand breaks with tip-enhanced Raman scattering. Angew Chem Int Ed 53:169–172

    Article  Google Scholar 

  24. Najjar S, Talaga D, Schué L et al (2014) Tip-enhanced Raman spectroscopy of combed double-stranded DNA bundles. J Phys Chem C 118:1174–1181

    Article  CAS  Google Scholar 

  25. Stadler J, Schmid T, Zenobi R (2010) Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy. Nano Lett 10:4514–4520

    Article  CAS  Google Scholar 

  26. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Metallized tip amplification of near-field. Raman Scattering 183(1–4):333–336

    CAS  Google Scholar 

  27. Anderson MS (2000) Locally enhanced Raman spectroscopy with an atomic force microscope. Appl Phys Lett 76:3130–3132

    Article  CAS  Google Scholar 

  28. Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced. Raman Spectroscopy 318(1–3):131–136

    Google Scholar 

  29. Liu Z, Wang X, Dai K et al (2009) Tip-enhanced Raman spectroscopy for investigating adsorbed nonresonant molecules on single-crystal surfaces: tip regeneration, probe molecule, and enhancement effect. J Raman Spectrosc 40:1400–1406

    Article  CAS  Google Scholar 

  30. Zheng Z, Opilik L, Schiffmann F et al (2014) Synthesis of two-dimensional analogues of copolymers by site-to-site transmetalation of organometallic monolayer sheets. J Am Chem Soc 136:6103–6110

    Article  CAS  Google Scholar 

  31. Sonntag MD, Klingsporn JM, Garibay LK et al (2012) Single-molecule tip-enhanced Raman spectroscopy. J Phys Chem C 116:478–483

    Article  CAS  Google Scholar 

  32. Steidtner J, Pettinger B (2008) Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys Rev Lett 100:236101

    Article  Google Scholar 

  33. Zhang R, Zhang Y, Dong ZC et al (2013) Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498:82–86

    Article  CAS  Google Scholar 

  34. Picardi G, Chaigneau M, Ossikovski R et al (2009) Tip enhanced Raman spectroscopy on azobenzene thiol self-assembled monolayers on Au(111). J Raman Spectrosc 40:1407–1412

    Article  CAS  Google Scholar 

  35. Picardi G, Królikowska A, Yasukuni R, Chaigneau M, Escude M, Mourier V, Licitra C, Ossikovski R (2014) Exchange of methyl- and azobenzene-terminated alkanethiols on polycrystalline gold studied by tip-enhanced Raman mapping. ChemPhysChem 15:276–282

    Article  CAS  Google Scholar 

  36. Horimoto NN, Tomizawa S, Fujita Y, Kajimoto S, Fukumura H (2014) Nano-scale characterization of binary self-assembled monolayers under an ambient condition with STM and TERS. Chem Commun 50:9862–9864

    Article  CAS  Google Scholar 

  37. Munakata H, Kuwabata S, Yoshihisa O, Yoneyama H (2001) Spatial distribution of domains in binary self-assembled monolayers of thiols having different lengths. J Electroanal Chem 496(1–2):29–36

    Article  CAS  Google Scholar 

  38. Stranick SJ, Parikh AN, Tao YT, Allara DL, Weiss PS (1994) Phase separation of mixed-composition self-assembled monolayers into nanometer scale molecular domains. J Phys Chem 98(31):7636–7646

    Article  CAS  Google Scholar 

  39. Stadler J, Schmid T, Zenobi R (2010) Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy. Nano Lett 10:4514–4520

    Article  CAS  Google Scholar 

  40. Blum C, Schmid T, Opilik L et al (2012) Missing amide I mode in gap-mode tip-enhanced Raman spectra of proteins. J Phys Chem C 116:23061–23066

    Article  CAS  Google Scholar 

  41. Schmid T, Opilik L, Blum C, Zenobi R (2013) Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Angew Chem Int Ed 52:5940–5954

    Article  CAS  Google Scholar 

  42. Yu J-J, Tan YH, Li X et al (2006) A nanoengineering approach to regulate the lateral heterogeneity of self-assembled monolayers. J Am Chem Soc 128:11574–11581

    Article  CAS  Google Scholar 

  43. Liu Z, Wang X, Dai K et al (2009) Tip-enhanced Raman spectroscopy for investigating adsorbed nonresonant molecules on single-crystal surfaces: tip regeneration, probe molecule, and enhancement effect. J Raman Spectrosc 40:1400–1406

    Article  CAS  Google Scholar 

  44. Edinger K, Goelzhaeuser A, Demota K, Woell C, Grunze M (1993) Formation of self-assembled monolayers of n-alkanethiols on gold: a scanning tunneling microscopy study on the modification of substrate morphology. Langmuir 9(1):4–8

    Article  CAS  Google Scholar 

  45. Chernia Z, Livneh T, Pri-Bar I, Koresh JE (2001) Mode assignment for linear phenyl acetylene sequence: phenylacetylene, di-phenylacetylene and 1,4-di(phenylethynyl)benzene. Vib Spectrosc 25:119–131

    Article  CAS  Google Scholar 

  46. Joo S-W, Kim K (2004) Adsorption of phenylacetylene on gold nanoparticle surfaces investigated by surface-enhanced Raman scattering. J Raman Spectrosc 35:549–554

    Article  CAS  Google Scholar 

  47. Liu Z, Wang X, Dai K et al (2009) Tip-enhanced Raman spectroscopy for investigating adsorbed nonresonant molecules on single-crystal surfaces: tip regeneration, probe molecule, and enhancement effect. J Raman Spectrosc 40:1400–1406

    Article  CAS  Google Scholar 

  48. Chaigneau M, Picardi G, Ossikovski R (2011) Molecular arrangement in self-assembled azobenzene-containing thiol monolayers at the individual domain level studied through polarized near-field Raman spectroscopy. IJMS 12:1245–1258

    Article  CAS  Google Scholar 

  49. Opilik L, Bauer T, Schmid T et al (2011) Nanoscale chemical imaging of segregated lipid domains using tip-enhanced Raman spectroscopy. Phys Chem Chem Phys 13:9978–9981

    Article  CAS  Google Scholar 

  50. Kudelski A (2010) Raman characterization of monolayers formed from mixtures of sodium 2-mercaptoethanesulfonate and various aromatic mercapto-derivative bases. J Phys Chem B 114:5180–5189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the SALSA program at Humboldt University, Berlin, and by the EMRP NEW02 project “Metrology for Raman spectroscopy.” The EMRP is jointly funded by the participating countries within EURAMET and the European Union. We would like to thank Lothar Opilik and Jacek Szczerbiński for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Zenobi.

Additional information

Published in the topical collection Nanospectroscopy with guest editor Mustafa Culha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 976 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, WI., Shao, F., Stephanidis, B. et al. Tip-enhanced Raman spectroscopic imaging shows segregation within binary self-assembled thiol monolayers at ambient conditions. Anal Bioanal Chem 407, 8197–8204 (2015). https://doi.org/10.1007/s00216-015-8840-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8840-x

Keywords

Navigation