Skip to main content
Log in

Analysis of drug interactions with very low density lipoprotein by high-performance affinity chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

High-performance affinity chromatography (HPAC) was utilized to examine the binding of very low density lipoprotein (VLDL) with drugs, using R/S-propranolol as a model. These studies indicated that two mechanisms existed for the binding of R- and S-propranolol with VLDL. The first mechanism involved non-saturable partitioning of these drugs with VLDL, which probably occurred with the lipoprotein’s non-polar core. This partitioning was described by overall affinity constants of 1.2 (±0.3) × 106 M−1 for R-propranolol and 2.4 (±0.6) × 106 M−1 for S-propranolol at pH 7.4 and 37 °C. The second mechanism occurred through saturable binding by these drugs at fixed sites on VLDL, such as represented by apolipoproteins on the surface of the lipoprotein. The association equilibrium constants for this saturable binding at 37 °C were 7.0 (±2.3) × 104 M−1 for R-propranolol and 9.6 (±2.2) × 104 M−1 for S-propranolol. Comparable results were obtained at 20 and 27 °C for the propranolol enantiomers. This work provided fundamental information on the processes involved in the binding of R- and S-propranolol to VLDL, while also illustrating how HPAC can be used to evaluate relatively complex interactions between agents such as VLDL and drugs or other solutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Otagiri M (2005) Drug Metab Pharmacokinet 20:309–323

    Article  CAS  Google Scholar 

  2. Bertucci C, Domenici E (2002) Curr Med Chem 9:1463

    Article  CAS  Google Scholar 

  3. Patel S, Wainer IW, Lough JW (2006) In: Hage DS (ed) Handbook of affinity chromatography, 2nd edn. CRC, Boca Raton, pp 663–683

    Google Scholar 

  4. Hage DS, Jackson A, Sobansky M, Schiel JE, Yoo MY, Joseph KS (2009) J Sep Sci 32:835–853

    Article  CAS  Google Scholar 

  5. Xuan H, Hage DS (2005) Anal Biochem 346:300–310

    Article  CAS  Google Scholar 

  6. Mallik R, Xuan H, Guiochon G, Hage DS (2008) Anal Biochem 376:154–156

    Article  CAS  Google Scholar 

  7. Jonas A (2002) In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins, and membranes. Elsevier, Amsterdam, pp 483–504

    Chapter  Google Scholar 

  8. Hage DS (2002) J Chromatogr B 768:3–30

    Article  CAS  Google Scholar 

  9. Kuroda Y, Cao B, Shibukawa A, Nakagawa T (2001) Electrophoresis 22:3401–3407

    Article  CAS  Google Scholar 

  10. Sobansky MR, Hage DS (2012) Anal Bioanal Chem 403:563–571

    Article  CAS  Google Scholar 

  11. Shen Q, Wang L, Zhou H, Jiang H, Yu L, Zeng S (2013) Acta Pharmacol Sin 34:998–1006

    Article  CAS  Google Scholar 

  12. Noctor TAG (1993) In: Wainer IW (ed) Drug Stereochemistry: analytical methods and pharmacology. CRC/Marcel Dekker, New York, pp 337–364

    Google Scholar 

  13. Dong H, Guo X, Li Z (2011) In: Lin G, You Q, Cheng J (eds) Chiral drugs: chemistry and biological action. Wiley, Hoboken, pp 347–380

    Chapter  Google Scholar 

  14. Glasson S, Zini R, D’Athis P, Tillement JP, Boissier JR (1980) Mol Pharmacol 17:187–191

    CAS  Google Scholar 

  15. Ohnishi T, Mohamed NAL, Shibukawa A, Kuroda Y, Nakagawa T, El Gizawy S, Askal HF, El Kommos ME (2002) J Pharm Biomed Anal 27:607–614

    Article  CAS  Google Scholar 

  16. Mohamed NAL, Kuroda Y, Shibukawa A, Nakagawa T, El Gizawy S, Askal HF, El Kommos ME (2000) J Chromatogr A 875:447–453

    Article  CAS  Google Scholar 

  17. Mohamed NAL, Kuroda Y, Shibukawa A, Nakagawa T, El Gizawy S, Askal HF, El Kommos ME (1999) J Pharm Biomed Anal 21:1037–1043

    Article  CAS  Google Scholar 

  18. Hebb AR, Godwin TF, Gunton RW (1968) Can Med Assoc J 98:246–251

    CAS  Google Scholar 

  19. Hansson L, Malmerona R, Olander R, Rosenhall L, Westerlund A, Aberg H, Hood B (1972) Klein Wschr 50:364–369

    Article  CAS  Google Scholar 

  20. Harrison DC, Griffin JR, Fiene TJ (1965) N Engl J Med 273:410–415

    Article  CAS  Google Scholar 

  21. Henry JA, Dunlop AW, Mitchell SN, Turner P, Adams P (1981) J Pharm Pharmacol 33:179–182

    Article  CAS  Google Scholar 

  22. Plumb RS, Potts WB III, Rainville PD, Alden PG, Shave DH, Baynham G, Mazzeo JR (2008) Rapid Commun Mass Spectrom 22:2139–2152

    Article  CAS  Google Scholar 

  23. Barklay M (1972) In: Nelson GJ (ed) Blood Lipids and lipoproteins: quantitation, composition, and metabolism. Wiley, New York, pp 587–603

    Google Scholar 

  24. Wasan KM, Cassidy SM (1998) J Pharm Sci 87:411–424

    Article  CAS  Google Scholar 

  25. Harmony JAK, Aleson AL, McCarthy BM (1986) In: Scanu AM, Spector AA (eds) Biochemistry and biology of plasma lipoproteins. Marcel Dekker, New York, pp 403–430

    Google Scholar 

  26. Mbewu AD, Durrington PN (1990) Atherosclerosis 85:1–14

    Article  CAS  Google Scholar 

  27. Durrington PN (1989) In: Durrington PN (ed) Lipoproteins and lipids. Wright, London, pp 255–277

    Google Scholar 

  28. Havel RJ, Kane JP (1995) In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic and molecular basis of inherited disease. McGraw-Hill, New York, pp 1129–1138

    Google Scholar 

  29. Skipski VR (1972) In: Nelson GJ (ed) Blood Lipids and lipoproteins quantitation, composition, and metabolism. Wiley, New York, pp 471–583

    Google Scholar 

  30. Kwong TC (1985) Clin Chim Acta 151:193–216

    Article  CAS  Google Scholar 

  31. Chen S, Sobansky M, Hage DS (2010) Anal Biochem 397:107–114

    Article  CAS  Google Scholar 

  32. Kim HS, Wainer IW (2008) J Chromatogr B 870:22–26

    Article  CAS  Google Scholar 

  33. Hollósy F, Valkó K, Hersey A, Nunhuck S, Kéri G, Bevan C (2006) J Med Chem 49:6958–6971

    Article  Google Scholar 

  34. Buchholz L, Cai CH, Andress L, Cleton A, Brodfuehrer J, Cohen L (2002) Eur J Pharm Sci 15:209–215

    Article  CAS  Google Scholar 

  35. Loun B, Hage DS (1994) Anal Chem 66:3814–3822

    Article  CAS  Google Scholar 

  36. Hage DS, Chen J (2006) In: Hage DS (ed) Handbook of affinity chromatography. CRC/Taylor & Francis, New York, pp 595–628

    Google Scholar 

  37. Tweed S, Loun B, Hage DS (1997) Anal Chem 69:4790–4798

    Article  CAS  Google Scholar 

  38. Mallik R, Xuan H, Hage DS (2007) J Chromatogr A 1149:294–304

    Article  CAS  Google Scholar 

  39. Yang CY, Gu ZW, Valentinova N, Pownall HJ, Lee B, Yang M, Xie YH, Guyton JR, Vlasik TN, Fruchart JC, Gotto AM (1993) J Lipid Res 34:1311–1321

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Health under grant R01 GM044931 and was performed in facilities renovated under grant RR015468-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Hage.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobansky, M.R., Hage, D.S. Analysis of drug interactions with very low density lipoprotein by high-performance affinity chromatography. Anal Bioanal Chem 406, 6203–6211 (2014). https://doi.org/10.1007/s00216-014-8081-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8081-4

Keywords

Navigation