Skip to main content
Log in

Fatty acid desaturation index in human plasma: comparison of different analytical methodologies for the evaluation of diet effects

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Stearoyl-CoA desaturase 1 (SCD1) plays a role in the development of obesity and related conditions, such as insulin resistance, and potentially also in neurological and heart diseases. The activity of SCD1 can be monitored using the desaturation index (DI), the ratio of product (16:1n-7 and 18:1n-9) to precursor (16:0 and 18:0) fatty acids. Here, different analytical strategies were applied to identify the method which best supports SCD1 biology. A novel effective approach was the use of the SCD1-independent fatty acid (16:1n-10) as a negative control. The first approach was based on a simple extraction followed by neutral loss triglyceride fatty acid analysis. The second approach was based on the saponification of triglycerides followed by fatty acid analysis (specific for the position of the double bond within monounsaturated fatty acids (MUFAs)). In addition to the analytical LC-MS assays, different matrices (plasma total triglyceride fraction and the very low-density lipoprotein (VLDL) fraction) were investigated to identify the best for studying changes in SCD1 activity. Samples from volunteers on a high-carbohydrate diet were analyzed. Both ultra HPLC (UHPLC)-MS-based assays showed acceptable accuracies (75–125 % of nominal) and precisions (<20 %) for the analysis of DI-specific fatty acids in VLDL and plasma. The most specific assay for the analysis of the liver SCD activity was then validated for specificity and selectivity, intra- and interday accuracy and precision, matrix effects, dilution effects, and analyte stability. After 3 days of high-carbohydrate diet, only the specific fatty acids in human plasma VLDL showed a significant increase in DI and associated SCD1 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weiss K, Mihaly J, Liebisch G, Marosvolgyi T, Schmitz G, Decsi T, Ruhl R (2011) Lipids 46:1013–1020

    Article  CAS  Google Scholar 

  2. Sampath H, Ntambi JM (2011) Ann N Y Acad Sci 1243:47–53

    Article  CAS  Google Scholar 

  3. Chajes V, Joulin V, Clavel-Chapelon F (2011) Curr Opin Lipidol 22:6–10

    Article  CAS  Google Scholar 

  4. Chajes V, Hulten K, Van Kappel AL, Winkvist A, Kaaks R, Hallmans G, Lenner P, Riboli E (1999) Int J Cancer 83:585–590

    Article  CAS  Google Scholar 

  5. Chajes V, Hulten K, Van Kappel AL, Winkvist A, Kaaks R, Hallmans G, Lenner PG, Riboli E (1999) Lipids 34:S113

    Article  CAS  Google Scholar 

  6. Liu X, Strable MS, Ntambi JM (2011) Adv Nutr 2:15–22

    Article  Google Scholar 

  7. Kim YC, Ntambi JM (1999) Biochem Biophys Res Commun 266:1–4

    Article  CAS  Google Scholar 

  8. Flowers MT, Ntambi JM (2008) Curr Opin Lipidol 19:248–256

    Article  CAS  Google Scholar 

  9. Collins JM, Neville MJ, Hoppa MB, Frayn KN (2010) J Biol Chem 285:6044–6052

    Article  CAS  Google Scholar 

  10. Postic C, Girard J (2008) J Clin Invest 118:829–838

    Article  CAS  Google Scholar 

  11. Miyazaki M, Kim YC, Gray-Keller MP, Attie AD, Ntambi JM (2000) J Biol Chem 275:30132–30138

    Article  CAS  Google Scholar 

  12. Flowers MT, Ntambi JM (2009) Biochim Biophys Acta 1791:85–91

    Article  CAS  Google Scholar 

  13. Paton CM, Ntambi JM (2009) Am J Physiol Endocrinol Metab 297:E28–E37

    Article  CAS  Google Scholar 

  14. Barrows BR, Parks EJ (2006) J Clin Endocrinol Metab 91:1446–1452

    Article  CAS  Google Scholar 

  15. Magkos F, Patterson BW, Mittendorfer B (2006) Am J Physiol Endocrinol Metab 291:E1243–E1249

    Article  CAS  Google Scholar 

  16. Vedala A, Wang W, Neese RA, Christiansen MP, Hellerstein MK (2006) J Lipid Res 47:2562–2574

    Article  CAS  Google Scholar 

  17. Diraison F, Moulin P, Beylot M (2003) Diabetes Metab 29:478–485

    Article  CAS  Google Scholar 

  18. Magkos F (2009) Prog Lipid Res 48:171–190

    Article  CAS  Google Scholar 

  19. Mittendorfer B, Patterson BW, Klein S, Sidossis LS (2003) Am J Physiol Endocrinol Metab 284:E708–E715

    CAS  Google Scholar 

  20. Mittendorfer B, Patterson BW, Klein S (2003) Am J Physiol Endocrinol Metab 284:E549–E556

    CAS  Google Scholar 

  21. Barter PJ, Nestel PJ (1973) Metabolism 22:779–783

    Article  CAS  Google Scholar 

  22. Roongta UV, Pabalan JG, Wang X, Ryseck RP, Fargnoli J, Henley BJ, Yang WP, Zhu J, Madireddi MT, Lawrence RM, Wong TW, Rupnow BA (2011) Mol Cancer Res 9:1551–1561

    Article  CAS  Google Scholar 

  23. Chajes V, Jenab M, Romieu I, Ferrari P, Dahm CC, Overvad K, Egeberg R, Tjonneland A, Clavel-Chapelon F, Boutron-Ruault MC, Engel P, Teucher B, Kaaks R, Floegel A, Boeing H, Trichopoulou A, Dilis V, Karapetyan T, Mattiello A, Tumino R, Grioni S, Palli D, Vineis P, Bueno-de-Mesquita HB, Numans ME, Peeters PH, Lund E, Navarro C, Quiros JR, Sanchez-Cantalejo E, Gurrea AB, Dorronsoro M, Regner S, Sonestedt E, Wirfalt E, Khaw KT, Wareham N, Allen NE, Crowe FL, Rinaldi S, Slimani N, Carneiro F, Riboli E, Gonzalez CA (2011) Am J Clin Nutr 94:1304–1313

    Article  CAS  Google Scholar 

  24. Peter A, Cegan A, Wagner S, Lehmann R, Stefan N, Konigsrainer A, Konigsrainer I, Haring HU, Schleicher E (2009) Clin Chem 55:2113–2120

    Article  CAS  Google Scholar 

  25. Brousseau T, Clavey V, Bard JM, Fruchart JC (1993) Clin Chem 39:960–964

    CAS  Google Scholar 

  26. McEneny J, McMaster C, Trimble ER, Young IS (2002) J Lipid Res 43:824–831

    CAS  Google Scholar 

  27. Burdge GC, Wright P, Jones AE, Wootton SA (2000) Br J Nutr 84:781–787

    CAS  Google Scholar 

  28. Kaluzny MA, Duncan LA, Merritt MV, Epps DE (1985) J Lipid Res 26:135–140

    CAS  Google Scholar 

  29. Folch J, Lees M, Sloane Stanley GH (1957) J Biol Chem 226:497–509

    CAS  Google Scholar 

  30. Fisher EA (2012) Biochim Biophys Acta 1821:778–781

    Article  CAS  Google Scholar 

  31. Dunphy PJ, Whittle KJ, Pennock JF (1965) Chem Ind 27:1217–1218

    CAS  Google Scholar 

  32. Zivkovic AM, Wiest MM, Nguyen UT, Davis R, Watkins SM, German JB (2009) Metabolomics 5:507–516

    Article  CAS  Google Scholar 

  33. Petersson H, Basu S, Cederholm T, Riserus U (2008) Br J Nutr 99:1186–1189

    Article  CAS  Google Scholar 

  34. Sjogren P, Sierra-Johnson J, Gertow K, Rosell M, Vessby B, de Faire U, Hamsten A, Hellenius ML, Fisher RM (2008) Diabetologia 51:328–335

    Article  CAS  Google Scholar 

  35. Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR, Ntambi JM (2002) J Lipid Res 43:1899–1907

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jost Klawitter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2.86 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klawitter, J., Bek, S., Zakaria, M. et al. Fatty acid desaturation index in human plasma: comparison of different analytical methodologies for the evaluation of diet effects. Anal Bioanal Chem 406, 6399–6408 (2014). https://doi.org/10.1007/s00216-014-8020-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8020-4

Keywords

Navigation