Skip to main content
Log in

Development and validation of a LC-MS/MS assay for quantitation of plasma citrulline for application to animal models of the acute radiation syndrome across multiple species

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The potential risk of a radiological catastrophe highlights the need for identifying and validating potential biomarkers that accurately predict radiation-induced organ damage. A key target organ that is acutely sensitive to the effects of irradiation is the gastrointestinal (GI) tract, referred to as the GI acute radiation syndrome (GI-ARS). Recently, citrulline has been identified as a potential circulating biomarker for radiation-induced GI damage. Prior to biologically validating citrulline as a biomarker for radiation-induced GI injury, there is the important task of developing and validating a quantitation assay for citrulline detection within the radiation animal models used for biomarker validation. Herein, we describe the analytical development and validation of citrulline detection using a liquid chromatography tandem mass spectrometry assay that incorporates stable-label isotope internal standards. Analytical validation for specificity, linearity, lower limit of quantitation, accuracy, intra- and interday precision, extraction recovery, matrix effects, and stability was performed under sample collection and storage conditions according to the Guidance for Industry, Bioanalytical Methods Validation issued by the US Food and Drug Administration. In addition, the method was biologically validated using plasma from well-characterized mouse, minipig, and nonhuman primate GI-ARS models. The results demonstrated that circulating citrulline can be confidently quantified from plasma. Additionally, circulating citrulline displayed a time-dependent response for radiological doses covering GI-ARS across multiple species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. MacVittie TJ (2012) The MCART consortium animal models series. Health Phys 103:340–342. doi:10.1097/HP.0b013e318261175a

    Article  CAS  Google Scholar 

  2. Potten CS (1990) A comprehensive study of the radiobiological response of the murine (BDF1) small intestine. Int J Radiat Biol 58:925–973

    Article  CAS  Google Scholar 

  3. Papadia C, Sherwood RA, Kalantzis C et al (2007) Plasma citrulline concentration: a reliable marker of small bowel absorptive capacity independent of intestinal inflammation. Am J Gastroenterol 102:1474–1482. doi:10.1111/j.1572-0241.2007.01239.x

    Article  CAS  Google Scholar 

  4. Lutgens L, Lambin P (2007) Biomarkers for radiation-induced small bowel epithelial damage: an emerging role for plasma citrulline. World J Gastroenterol 13:3033–3042

    CAS  Google Scholar 

  5. Pappas PA, Saudubray JM, Tzakis AG et al (2001) Serum citrulline and rejection in small bowel transplantation: a preliminary report. Transplantation 72:1212–1216

    Article  CAS  Google Scholar 

  6. Crenn P, Vahedi K, Lavergne-Slove A et al (2003) Plasma citrulline: a marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology 124:1210–1219. doi:10.1016/S0016-5085(03)00170-7

    Article  CAS  Google Scholar 

  7. Cynober L, Melchior JC, Crenn P et al (2009) Plasma citrulline is a biomarker of enterocyte mass and an indicator of parenteral nutrition in HIV-infected patients. Am J Clin Nutr 90:587–594. doi:10.3945/ajcn.2009.27448.INTRODUCTION

    Article  Google Scholar 

  8. Rendon JL, Li X, Gupta P et al (2012) Decreased serum citrulline correlates with increased gut permeability following ethanol exposure and burn injury. Alcohol 42:177

    Article  Google Scholar 

  9. Rabier D, Kamoun P (1995) Metabolism of citrulline in man. Amino Acids 9:299–316. doi:10.1007/BF00807268

    Article  CAS  Google Scholar 

  10. Wu G, Knabe DA, Flynn NE (1994) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299:115–121

    CAS  Google Scholar 

  11. Fekkes D, van Dalen A, Edelman M, Voskuilen A (1995) Validation of the determination of amino acids in plasma by high-performance liquid chromatography using automated pre-column derivatization with o-phthaldialdehyde. J Chromatogr B Biomed Sci Appl 669:177–186

    Article  CAS  Google Scholar 

  12. Sultana H, Onodera R, Or-Rashid MM, Wadud S (2001) Convenient method for the determination of arginine and its related compounds in rumen fluid by reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 755:321–329. doi:10.1016/S0378-4347(01)00137-2

    Article  CAS  Google Scholar 

  13. Tsikas D, Teerlink T (2007) HPLC analysis of ADMA and other methylated l-arginine analogs in biological fluids. J Chromatogr B 851:21–29

    Article  Google Scholar 

  14. Caussé E, Siri N, Arnal J et al (2000) Determination of asymmetrical dimethylarginine by capillary electrophoresis–laser-induced fluorescence. J Chromatogr B Biomed Sci Appl 741:77–83. doi:10.1016/S0378-4347(00)00034-7

    Article  Google Scholar 

  15. Schulze F, Wesemann R, Schwedhelm E, Sydow K, Albsmeier J, Cooke JP, Böger RH (2004) Determination of asymmetric dimethylarginine (ADMA) using a novel ELISA assay. Clin Chem Lab Med 42:1377–1383. doi:10.1515/CCLM.2004.257

    Article  CAS  Google Scholar 

  16. Mao H, Wei W, Xiong W et al (2010) Simultaneous determination of l-citrulline and l-arginine in plasma by high performance liquid chromatography. Clin Biochem 43:1141–1147

    Article  CAS  Google Scholar 

  17. Harder U, Koletzko B, Peissner W (2011) Quantification of 22 plasma amino acids combining derivatization and ion-pair LC-MS/MS. J Chromatogr B 879:495–504

    Article  CAS  Google Scholar 

  18. Casetta B, Tagliacozzi D, Shushan B, Federici G (2000) Development of a method for rapid quantitation of amino acids by liquid chromatography-tandem mass spectrometry (LC-MSMS) in plasma. Clin Chem Lab Med 38:391–401. doi:10.1515/CCLM.2000.057

    Article  CAS  Google Scholar 

  19. Kato M, Kato H, Eyama S, Takatsu A (2009) Application of amino acid analysis using hydrophilic interaction liquid chromatography coupled with isotope dilution mass spectrometry for peptide and protein quantification. J Chromatogr B 877:3059–3064

    Article  CAS  Google Scholar 

  20. Thiele B, Füllner K, Stein N et al (2008) Analysis of amino acids without derivatization in barley extracts by LC-MS-MS. Anal Bioanal Chem 391:2663–2672. doi:10.1007/s00216-008-2167-9

    Article  CAS  Google Scholar 

  21. Qu J, Wang Y, Luo G et al (2002) Validated quantitation of underivatized amino acids in human blood samples by volatile ion-pair reversed-phase liquid chromatography coupled to isotope dilution tandem mass spectrometry. Anal Chem 74:2034–2040. doi:10.1021/ac0111917

    Article  CAS  Google Scholar 

  22. Brown CM, Becker JO, Wise PM, Hoofnagle AN (2011) Simultaneous determination of 6 l-arginine metabolites in human and mouse plasma by using hydrophilic-interaction chromatography and electrospray tandem mass spectrometry. Clin Chem 57:701–709. doi:10.1373/clinchem.2010.155895

    Article  CAS  Google Scholar 

  23. Wang H-Y, Hu P, Jiang J (2010) Rapid determination of underivatized arginine, ornithine, citrulline and symmetric/asymmetric dimethylarginine in human plasma by LC-MS. Chromatographia 71:933–939. doi:10.1365/s10337-010-1535-8

    Article  CAS  Google Scholar 

  24. Jaisson S, Gorisse L, Pietrement C, Gillery P (2012) Quantification of plasma homocitrulline using hydrophilic interaction liquid chromatography (HILIC) coupled to tandem mass spectrometry. Anal Bioanal Chem 402:1635–1641. doi:10.1007/s00216-011-5619-6

    Article  CAS  Google Scholar 

  25. Gupta PK, Brown J, Biju PG et al (2011) Development of high-throughput HILIC-MS/MS methodology for plasma citrulline determination in multiple species. Anal Methods 3:1759–1768. doi:10.1039/c1ay05213f

    Article  CAS  Google Scholar 

  26. Demacker PNM, Beijers AM, van Daal H et al (2009) Plasma citrulline measurement using UPLC tandem mass-spectrometry to determine small intestinal enterocyte pathology. J Chromatogr B 877:387–392

    Article  CAS  Google Scholar 

  27. Shin S, Fung S-M, Mohan S, Fung H-L (2011) Simultaneous bioanalysis of l-arginine, l-citrulline, and dimethylarginines by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 879:467–474. doi:10.1016/j.jchromb.2011.01.006

    Article  CAS  Google Scholar 

  28. Martens-Lobenhoffer J, Bode-Böger SM (2003) Simultaneous detection of arginine, asymmetric dimethylarginine, symmetric dimethylarginine and citrulline in human plasma and urine applying liquid chromatography–mass spectrometry with very straightforward sample preparation. J Chromatogr B 798:231–239. doi:10.1016/j.jchromb.2003.09.050

    Article  CAS  Google Scholar 

  29. Naidong W, Shou W, Chen Y-L, Jiang X (2001) Novel liquid chromatographic–tandem mass spectrometric methods using silica columns and aqueous–organic mobile phases for quantitative analysis of polar ionic analytes in biological fluids. J Chromatogr B Biomed Sci Appl 754:387–399. doi:10.1016/S0378-4347(01)00021-4

    Article  CAS  Google Scholar 

  30. Federal Drug Administration (2001) Guidance for industry bioanalytical method validation guidance for industry bioanalytical method validation

  31. Booth C, Tudor G, Tudor J et al (2012) Acute gastrointestinal syndrome in high-dose irradiated mice. Health Phys 103:383–399. doi:10.1097/HP.0b013e318266ee13

    Article  CAS  Google Scholar 

  32. Kushnir MM, Rockwood AL, Nelson GJ et al (2005) Assessing analytical specificity in quantitative analysis using tandem mass spectrometry. Clin Biochem 38:319–327. doi:10.1016/j.clinbiochem.2004.12.003

    Article  CAS  Google Scholar 

  33. Vogeser M, Seger C (2010) Pitfalls associated with the use of liquid chromatography-tandem mass spectrometry in the clinical laboratory. Clin Chem 56:1234–1244. doi:10.1373/clinchem.2009.138602

    Article  CAS  Google Scholar 

  34. Dookeran N (1996) Fragmentation reactions of protonated-amino acids. J Mass Spectrom 31:500–508

    Article  CAS  Google Scholar 

  35. Gogichaeva NV, Williams T, Alterman MA (2007) MALDI TOF/TOF tandem mass spectrometry as a new tool for amino acid analysis. J Am Soc Mass Spectrom 18:279–284. doi:10.1016/j.jasms.2006.09.013

    Article  CAS  Google Scholar 

  36. Li W, Cohen LH (2003) Quantitation of endogenous analytes in biofluid without a true blank matrix. Anal Chem 75:5854–5859. doi:10.1021/ac034505u

    Article  CAS  Google Scholar 

  37. Rousu T, Tolonen A (2012) Comparison of unit resolution SRM and TOF-MS at 12,000 mass resolution for quantitative bioanalysis of 11 steroids from human plasma. Bioanalysis 4:555–563. doi:10.4155/bio.11.289

    Article  CAS  Google Scholar 

  38. Ciccimaro E, Blair IA (2010) Stable-isotope dilution LC-MS for quantitative biomarker analysis. Bioanalysis 2:311–341. doi:10.4155/bio.09.185

    Article  CAS  Google Scholar 

  39. Chambers E, Wagrowski-Diehl DM, Lu Z, Mazzeo JR (2007) Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J Chromatogr B 852:22–34

    Article  CAS  Google Scholar 

  40. Jones JW, Scott AJ, Tudor G et al (2014) Identification and quantitation of biomarkers for radiation-induced injury via mass spectrometry. Heal

  41. Wakabayashi Y, Yamada E, Hasegawa T, Yamada R (1991) Enzymological evidence for the indispensability of small intestine in the synthesis of arginine from glutamate. Arch Biochem Biophys 291:1–8. doi:10.1016/0003-9861(91)90097-3

    Article  CAS  Google Scholar 

  42. Crenn P, Messing B, Cynober L (2008) Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin Nutr 27:328–339. doi:10.1016/j.clnu.2008.02.005

    Article  CAS  Google Scholar 

  43. Hérodin F, Richard S, Grenier N et al (2012) Assessment of total- and partial-body irradiation in a baboon model: preliminary results of a kinetic study including clinical, physical, and biological parameters. Health Phys 103:143–149. doi:10.1097/HP.0b013e3182475e54

    Google Scholar 

  44. Reddy DVN (1967) Distribution of free ammo acids and related compounds in ocular fluids, lens, and plasma of various mammalian species. Invest Ophthalmol 6:478–483

    CAS  Google Scholar 

  45. Bansal S, DeStefano A (2007) Key elements of bioanalytical method validation for small molecules. AAPS J 9:E109–E114. doi:10.1208/aapsj0901011

    Article  CAS  Google Scholar 

  46. Jemal M (2000) High-throughput quantitative bioanalysis by LC/MS/MS. Biomed Chromatogr 14:422–429. doi:10.1002/1099-0801(200010)14:6<422::AID-BMC25>3.0.CO;2-I

    Article  CAS  Google Scholar 

  47. Moroni M, Coolbaugh TV, Mitchell JM et al (2011) Vascular access port implantation and serial blood sampling in a Gottingen minipig (Sus scrofa domestica) model of acute radiation injury. J Am Assoc Lab Anim Sci 50:65–72

    CAS  Google Scholar 

  48. MacVittie TJ, Farese AM, Bennett A et al (2012) The acute gastrointestinal subsyndrome of the acute radiation syndrome: a rhesus macaque model. Health Phys 103:411–426. doi:10.1097/HP.0b013e31826525f0

    Article  CAS  Google Scholar 

  49. Williams JP, Brown SL, Georges GE et al (2010) Animal models for medical countermeasures to radiation exposure. Radiat Res 173:557–578. doi:10.1667/RR1880.1

    Article  CAS  Google Scholar 

  50. Federal Drug Administration (2009) Guidance for industry address efficacy under the animal rule guidance for industry

Download references

Acknowledgments

This work was funded with Federal funds from the National Institute of Allergy and Infectious Diseases (contract no. HHSN272201000046C). This work is also supported in part by the University of Maryland Baltimore, School of Pharmacy Mass Spectrometry Center (SOP1841-IQB2014). The authors would like to thank all members of the Medical Countermeasures Against Radiological Threats (MCART) consortium for their dedication, support, and guidance in establishing biomarker identification and validation as a priority in the radiation medical counter measure field. Additionally, we would like to acknowledge and thank all members of the Kane laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen A. Kane.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 800 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, J.W., Tudor, G., Bennett, A. et al. Development and validation of a LC-MS/MS assay for quantitation of plasma citrulline for application to animal models of the acute radiation syndrome across multiple species. Anal Bioanal Chem 406, 4663–4675 (2014). https://doi.org/10.1007/s00216-014-7870-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7870-0

Keywords

Navigation