Skip to main content
Log in

A miniature electronic nose system based on an MWNT–polymer microsensor array and a low-power signal-processing chip

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This article introduces a power-efficient, miniature electronic nose (e-nose) system. The e-nose system primarily comprises two self-developed chips, a multiple-walled carbon nanotube (MWNT)–polymer based microsensor array, and a low-power signal-processing chip. The microsensor array was fabricated on a silicon wafer by using standard photolithography technology. The microsensor array comprised eight interdigitated electrodes surrounded by SU-8 “walls,” which restrained the material–solvent liquid in a defined area of 650 × 760 μm2. To achieve a reliable sensor-manufacturing process, we used a two-layer deposition method, coating the MWNTs and polymer film as the first and second layers, respectively. The low-power signal-processing chip included array data acquisition circuits and a signal-processing core. The MWNT–polymer microsensor array can directly connect with array data acquisition circuits, which comprise sensor interface circuitry and an analog-to-digital converter; the signal-processing core consists of memory and a microprocessor. The core executes the program, classifying the odor data received from the array data acquisition circuits. The low-power signal-processing chip was designed and fabricated using the Taiwan Semiconductor Manufacturing Company 0.18-μm 1P6M standard complementary metal oxide semiconductor process. The chip consumes only 1.05 mW of power at supply voltages of 1 and 1.8 V for the array data acquisition circuits and the signal-processing core, respectively. The miniature e-nose system, which used a microsensor array, a low-power signal-processing chip, and an embedded k-nearest-neighbor-based pattern recognition algorithm, was developed as a prototype that successfully recognized the complex odors of tincture, sorghum wine, sake, whisky, and vodka.

The miniature e-nose device prototype

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Herrmann U, Jonischkeit T, Bargon J, Hahn U, Li Q-Y, Schalley C, Vogel E, Vögtle F (2002) Monitoring apple flavor by use of quartz microbalances. Anal Bioanal Chem 372(5–6):611–614

    Article  CAS  Google Scholar 

  2. De Vito S, Massera E, Di Francia G, Ambrosino C, Di Palma P, Magliulo V (2011) Development of an e-nose solution for landfill and industrial areas emission monitoring: selection of an ad-hoc sensor array. In: Neri G, Donato N, d’Amico A, Di Natale C (eds) Sensors and microsystems. Lecture notes in electrical engineering, vol 91. Springer, Dordrecht, pp 373–377

    Chapter  Google Scholar 

  3. Voss A, Baier V, Reisch R, Roda K, Elsner P, Ahlers H, Stein G (2005) Smelling renal dysfunction via electronic nose. Ann Biomed Eng 33(5):656–660

    Article  Google Scholar 

  4. Dutta R, Hines E, Gardner J, Boilot P (2002) Bacteria classification using Cyranose 320 electronic nose. Biomed Eng Online 1(1):1–7

    Article  Google Scholar 

  5. Nagle HT, Gutierrez-Osuna R, Schiffman SS (1998) The how and why of electronic noses. IEEE Spectr 35(9):22–31

    Article  Google Scholar 

  6. Korotcenkov G (2012) Chemical sensors applications. Chemical sensors: comprehensive sensor technologies, vol 6. Momentum, New York

    Google Scholar 

  7. Chang JB, Subramanian V (2008) Electronic noses sniff success. IEEE Spectr 45(3):50–56

    Article  Google Scholar 

  8. Lemmerhirt DF, Wise KD (2006) Chip-scale integration of data-gathering microsystems. Proc IEEE 94(6):1138–1159

    Article  Google Scholar 

  9. Boland W, Spiteller D (2001) Electronic noses. In: Hock B (ed) Bioresponse-linked instrumental analysis. Teubner, Stuttgart, pp 57–78

    Chapter  Google Scholar 

  10. Hatfield JV, Neaves P, Hicks PJ, Persaud K, Travers P (1994) Towards an integrated electronic nose using conducting polymer sensors. Sens Actuators B 18(1–3):221–228

    Article  CAS  Google Scholar 

  11. Arshak K, Moore E, Lyons GM, Harris J, Clifford S (2004) A review of gas sensors employed in electronic nose applications. Sens Rev 24(2):181–198

    Article  Google Scholar 

  12. Zee F, Judy JW (2001) Micromachined polymer-based chemical gas sensor array. Sens Actuators B 72(2):120–128

    Article  CAS  Google Scholar 

  13. Afridi MY, Suehle JS, Zaghloul ME, Berning DW, Hefner AR, Cavicchi RE, Semancik S, Montgomery CB, Taylor CJ (2002) A monolithic CMOS microhotplate-based gas sensor system. IEEE Sens J 2(6):644–655

    Article  CAS  Google Scholar 

  14. Guo B, Bermak A, Chan PCH, Yan G-Z (2007) A monolithic integrated 4 × 4 tin oxide gas sensor array with on-chip multiplexing and differential readout circuits. Solid State Electron 51(1):69–76

    Article  CAS  Google Scholar 

  15. Kim YS, Ha S-C, Yang Y, Kim YJ, Cho SM, Yang H, Kim YT (2005) Portable electronic nose system based on the carbon black–polymer composite sensor array. Sens Actuators B 108(1–2):285–291

    Article  CAS  Google Scholar 

  16. Hsieh H-Y, Tang K-T (2012) VLSI Implementation of a bio-inspired olfactory spiking neural network. IEEE Trans Neural Netw Learn Syst 23(7):1065–1073

    Article  Google Scholar 

  17. Tang K-T, Chiu S-W, Chang M-F, Hsieh C-C, Shyu J-M (2011) A low-power electronic nose signal-processing chip for a portable artificial olfaction system. IEEE Trans Biomed Circuits Syst 5(4):380–390

    Article  Google Scholar 

  18. Koickal TJ, Hamilton A, Su Lim T, Covington JA, Gardner JW, Pearce TC (2007) Analog VLSI circuit implementation of an adaptive neuromorphic olfaction chip. IEEE Trans Circuits Syst I 54(1):60–73

    Article  Google Scholar 

  19. Laconte J, Dupont C, Flandre D, Raskin JP (2004) SOI CMOS compatible low-power microheater optimization for the fabrication of smart gas sensors. IEEE Sens J 4(5):670–680

    Article  CAS  Google Scholar 

  20. Wang LC, Tang KT, Chiu SW, Yang SR, Kuo CT (2011) A bio-inspired two-layer multiple-walled carbon nanotube–polymer composite sensor array and a bio-inspired fast-adaptive readout circuit for a portable electronic nose. Biosens Bioelectron 26(11):4301–4307

    Article  CAS  Google Scholar 

  21. Lin Y-W, Wu T-M (2009) Synthesis and characterization of externally doped sulfonated polyaniline/multi-walled carbon nanotube composites. Compos Sci Technol 69(15–16):2559–2565

    Article  CAS  Google Scholar 

  22. Grate JW, Patrash SJ, Abraham MH (1995) Method for estimating polymer-coated acoustic wave vapor sensor responses. Anal Chem 67(13):2162–2169

    Article  CAS  Google Scholar 

  23. Wu C-Y, Tang K-T (2010) A polymer-based gas sensor array and its adaptive interface circuit. In: 2010 international symposium on VLSI design automation and test (VLSI-DAT), 26–29 April 2010, pp 355–358

  24. Chin S-M, Hsieh C-C, Chiu C-F, Tsai H-H (2010) A new rail-to-rail comparator with adaptive power control for low power SAR ADCs in biomedical application. In: Proceedings of 2010 I.E. international symposium on circuits and systems (ISCAS), May 30–June 2 2010, pp 1575–1578

  25. Perera A, Sundic T, Pardo A, Gutierrez-Osuna R, Marco S (2002) A portable electronic nose based on embedded PC technology and GNU/Linux: hardware, software and applications. IEEE Sens J 2(3):235–246

    Article  Google Scholar 

  26. Chang M-F, Kwai D-M, Yang S-M, Chou Y-F, Chen P-C (2007) Experiments on reducing standby current for compatible SRAM using hidden clustered source line control. In: 7th international conference on ASIC, 2007. ASICON ’07. 22–25 Oct 2007. pp 1038–1041

  27. Wilson DM, Hoyt S, Janata J, Booksh K, Obando L (2001) Chemical sensors for portable, handheld field instruments. IEEE Sens J 1(4):256–274

    Article  CAS  Google Scholar 

  28. Tang K-T, Chiu S-W, Pan C-H, Hsieh H-Y, Liang Y-S, Liu S-C (2010) Development of a portable electronic nose system for the detection and classification of fruity odors. Sensors 10(10):9179–9193

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Chung-Shan Institute of Science and Technology, Taiwan, for its technology consulting support and the National Science Council of Taiwan for its financial support (NSC 102-2220-E-007-006). The authors also thank Hung-Yi Hsieh, Meng-Fan Chang, Chih-Cheng Hsieh, and Jyuo-Min Shyu from National Tsing Hua University for chip design collaboration, and Li-Chun Wang from Chung-Shan Institute of Science and Technology for sensor design consulting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kea-Tiong Tang.

Additional information

Published in the topical collection Chemosensors and Chemoreception with guest editors Jong-Heun Lee and Hyung-Gi Byun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, SW., Wu, HC., Chou, TI. et al. A miniature electronic nose system based on an MWNT–polymer microsensor array and a low-power signal-processing chip. Anal Bioanal Chem 406, 3985–3994 (2014). https://doi.org/10.1007/s00216-013-7547-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7547-0

Keywords

Navigation