Skip to main content

Advertisement

Log in

Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid chromatography quadrupole–time of flight mass spectrometry (UPLC–Q–ToF-MS)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Here we present an ultra-performance liquid chromatography–mass spectrometry (UPLC–MS) method for extracellular measurements of known and unexpected metabolites in parallel. The method was developed by testing 86 metabolites, including amino acids, organic acids, sugars, purines, pyrimidines, vitamins, and nucleosides, that can be resolved by combining chromatographic and m/z dimensions. Subsequently, a targeted quantitative method was developed for 80 metabolites. The presented method combines a UPLC approach using hydrophilic interaction liquid chromatography (HILIC) and MS detection achieved by a hybrid quadrupole–time of flight (Q–ToF) mass spectrometer. The optimal setup was achieved by evaluating reproducibility and repeatability of the analytical platforms using pooled quality control samples to minimize the drift in instrumental performance over time. Then, the method was validated by analyzing extracellular metabolites from acute lymphoblastic leukemia cell lines (MOLT-4 and CCRF-CEM) treated with direct (A-769662) and indirect (AICAR) AMP activated kinase (AMPK) activators, monitoring uptake and secretion of the targeted compound over time. This analysis pointed towards a perturbed purine and pyrimidine catabolism upon AICAR treatment. Our data suggest that the method presented can be used for qualitative and quantitative analysis of extracellular metabolites and it is suitable for routine applications such as in vitro drug screening.

UPLC-MS analysis of extracellular metabolites from acute lymphoblastic leukemia cell lines treated with AMP activated kinase (AMPK) activators points out that purine catabolism is affected upon AICAR treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fiehn O (2001) Comp Funct Genomics 2:155–168

    Article  CAS  Google Scholar 

  2. Werner E, Croixmarie V, Umbdenstock T, Ezan E, Charminade P, Tabet JC, Junot C (2008) Anal Chem 80:4912–4932

    Article  Google Scholar 

  3. Nordström A, Want E, Northen T, Lehtiö J, Siuzdak G (2008) Anal Chem 80:421–429

    Article  Google Scholar 

  4. Koek MM, Bakels F, Engel W, van den Maagdenberg A, Ferrari MD, Coulier L, Hankemeier T (2010) Anal Chem 82:156–162

    Article  CAS  Google Scholar 

  5. Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL (2011) Chem Soc Rev 40:387–426

    Article  CAS  Google Scholar 

  6. Nevedomskaya E, Ramautar R, Derks R, Westbroek I, Zondag G, van der Pluijm I, Deelder AM, Mayboroda OA (2010) J Proteome Res 9:4869–4874

    Article  CAS  Google Scholar 

  7. Dunn WB (2008) Phys Biol 5:11001

    Article  Google Scholar 

  8. Pendyala G, Want EJ, Webb W, Siuzdak G, Fox HS (2007) J Neuroimmunol Pharmacol 2:72–80

    Article  Google Scholar 

  9. Palsson BØ (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  10. Thiele I, Palsson BØ (2010) Nat Proctols 5:93–121

    Article  CAS  Google Scholar 

  11. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ (2007) Mol Sys Biol 3:121

    Google Scholar 

  12. Duarte NC, Herrgard MJ, Palsson BØ (2004) Genome Res 14:1298–1309

    Article  CAS  Google Scholar 

  13. Duarte ND, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ (2007) PNAS 104:1777–1782

    Article  CAS  Google Scholar 

  14. Buescher JM, Moco S, Sauer U, Zamboni N (2010) Anal Chem 82:4403–4412

    Article  CAS  Google Scholar 

  15. Lu W, Clasquin MF, Melamud E, Amador-Noguez D, Caudy AA, Rabinowitz JD (2010) Anal Chem 82:3212–3221

    Article  CAS  Google Scholar 

  16. Cai X, Zou L, Dong J (2009) Anal Chim Acta 650:10–15

    Article  CAS  Google Scholar 

  17. Bennett BD, Kimball EH, Gao M (2009) Nat Chem Biol 5:593–599

    Article  CAS  Google Scholar 

  18. Chong CR, Sullivan DJ (2007) Nature 448:645–646

    Article  CAS  Google Scholar 

  19. Fan TWM, Bandura LL, Higashi RM, Lane AN (2005) Metabolomics 1:325–339

    Article  CAS  Google Scholar 

  20. Griffin JL, Pole JCM, Nicholson JK, Carmichael PL (2003) Biochim Biophys Acta 1619:151–158

    Article  CAS  Google Scholar 

  21. Neves AA, Brindle KM (2006) Biochim Biophys Acta 1766:242–261

    CAS  Google Scholar 

  22. Serkova NJ, Spratlin JL, Eckhardt SG (2007) Curr Opin Mol Ther 9:572–585

    CAS  Google Scholar 

  23. Tiziani S, Lodi A, Khanim FL, Viant MR, Bunce CM, Günther UL (2009) PLoS One 4:e4251

    Article  Google Scholar 

  24. Miura D, Fujimura Y, Tachibana H, Wariishi H (2010) Anal Chem 82:498–504

    Article  CAS  Google Scholar 

  25. Mo ML, Palsson BØ, Herrgard MJ (2009) BMC Syst Biol 3:37

    Article  Google Scholar 

  26. Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB (2003) Nat Biotech 21:692–696

    Article  CAS  Google Scholar 

  27. Shahama O, Slatea NG, Goldbergera O, Xud Q, Ramanathanb A, Souza AL, Clishb CB, Simsa KB, Mootha VK (2010) PNAS 107:1571–1575

    Article  Google Scholar 

  28. Reed JL, Famili I, Thiele I, Palsson BØ (2006) Nat Rev Genet 7:130–141

    Article  CAS  Google Scholar 

  29. Naidong WJ (2003) Chromatogr B 796:209–224

    Article  CAS  Google Scholar 

  30. Bidlingmeyer BA, Henderson JJ (2004) Chromatogr A 1060:187–193

    CAS  Google Scholar 

  31. O’Hagan S, Dunn WB, Brown M, Knowles JD, Kell DB (2005) Anal Chem 77:290–303

    Article  Google Scholar 

  32. Guy PA, Tavazzi I, Bruce SJ, Ramadan Z, Kochhar SJ (2008) Chromatogr B 871:253–260

    Article  CAS  Google Scholar 

  33. Zelena E, Dunn WB, Broadhurst D, Francis-McIntyre S, Carroll KM, Begley P, O’Hagan S, Knowles JD, Halsall A, HUSERMET Consortium, Wilson ID, Kell DB (2009) Anal Chem 81:1357–1364

    Article  CAS  Google Scholar 

  34. Paglia G, D'Apolito O, Tricarico F, Garofalo D, Corso G (2008) J Sep Sci 31:2424–2429

    Article  CAS  Google Scholar 

  35. Gika HG, Theodoridis GA, Wingate JE, Wilson ID (2007) J Proteome Res 6(8):3291–3303

    Article  CAS  Google Scholar 

  36. Oresic M, Tang J, Seppanen-Laakso T, Mattila I, Saarni SE, Saarni SI, Lonnqvist J, Sysi-Aho M, Hyotylainen T, Perala J, Suvisaari J (2011) Genome Med 3:19

    Article  CAS  Google Scholar 

  37. Rutter GA, Da Silva XG, Leclerc IJ (2003) Biochemistry 375:1–16

    Article  CAS  Google Scholar 

  38. Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) Eur J Biochem 229:558–565

    Article  CAS  Google Scholar 

  39. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) J Clin Invest 108:1167–1174

    CAS  Google Scholar 

  40. Young ME, Radda GK, Leighton B (1996) FEBS Lett 382:43–47

    Article  CAS  Google Scholar 

  41. Kotsis DH, Masko EM, Sigoillot FD, Di Gregorio R, Guy-Evans HI, Evans DR (2007) Mol Cell Biochem 301:69–81

    Article  CAS  Google Scholar 

  42. Soltoff SP, Hedden L (2008) Am J Physiol Cell Physiol 295:C590–C599

    Article  CAS  Google Scholar 

  43. Babraj JA (2009) Am J Physiol Endocrinol Metab 296:E1042–E1048

    Article  CAS  Google Scholar 

  44. D'Apolito O, Garofalo D, Paglia G, Zuppaldi A, Corso G (2010) J Sep Sci 33:966–973

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by ERC grant proposal No. 232816. The authors thank Maike K. Aurich for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Thiele.

Electronic supplementary material

Overlay EICs obtained using mobile phases at different pHs; Growth and apoptosis of MOLT-4 and CCRF-CCFR-CEM treated AMPK activators; Total ATP in cells; Metabolites secreted during the CCFR-CEM cells culture after 48 h with AICAR treatments. List of metabolites investigated during the method development; RPMI Advanced medium composition; predicted exo-metabolome composition; Coverage of the exo-metabolome at different ACN/sample dilution; Qualitative comparison of metabolites detected using two different analytical platforms.

ESM 1

(PDF 1.08 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paglia, G., Hrafnsdóttir, S., Magnúsdóttir, M. et al. Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid chromatography quadrupole–time of flight mass spectrometry (UPLC–Q–ToF-MS). Anal Bioanal Chem 402, 1183–1198 (2012). https://doi.org/10.1007/s00216-011-5556-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5556-4

Keywords

Navigation