Skip to main content
Log in

Toward the quantification of the 13CO2/12CO2 ratio in exhaled mouse breath with mid-infrared hollow waveguide gas sensors

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mouse sepsis models are used to gain insight into the complex processes involved with patients suffering from glucose metabolism disorders. Measuring the expiratory release of 13CO2 after administering stable labeled 13C6-glucose enables assessment of the in vivo integrity and functionality of key metabolic processes. In the present study, we demonstrate that Fourier transform infrared spectroscopy operating in the mid-infrared spectral regime (2–20 μm) combined with hollow waveguide gas sensing modules simultaneously serving as a miniaturized gas cell and as a waveguide are capable of quantitatively monitoring 13CO2 enrichment levels in low volume mouse breath samples.

Mouse intensive care unit (MICU) with patient and IR signature of the time progression for 12CO2/13CO2 in exhaled mouse breath

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The δ13C value in ‰ is defined as

    [21].

Abbreviations

CLS:

Classical least squares

FTIR:

Fourier transform infrared

GC/MS:

Gas chromatography/mass spectrometry

HWG:

Hollow waveguide

IRMS:

Isotope ratio mass spectrometry

LARA:

Laser-assisted ratio analysis

MCT:

Mercury–cadmium–telluride

MICU:

Mouse intensive care unit

MIR:

Mid-infrared

MS:

Mass spectrometry

NIR:

Near-infrared

NDIRS:

Non-dispersive isotope selective infrared spectroscopy

NMR:

Nuclear magnetic resonance

OAPM:

Off-axis parabolic mirror

PLS:

Partial least squares

QCL:

Quantum cascade laser

SIM:

Selected-ion-monitoring

S/N :

Signal-to-noise ratio

References

  1. Mizock BA (1995) Am J Med 98(1):75–84

    Article  CAS  Google Scholar 

  2. Leverve X (2003) Intensive Care Med 29(4):511–514

    Google Scholar 

  3. Schmid AI, Szendroedi J, Chmelik M, Krssak M, Moser E, Roden M (2011) Diabetes Care 34(2):448–453

    Article  CAS  Google Scholar 

  4. Koch A, Gressner OA, Sanson E, Tacke F, Trautwein C (2009) Crit Care 13(3):R95

    Article  Google Scholar 

  5. Langouche L, Vander Perre S, Frystyk J, Flyvbjerg A, Hansen TK, van den Berghe G (2009) Crit Care 13(4):R112

    Article  Google Scholar 

  6. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R (2001) N Engl J Med 345(19):1359–1367

    Article  Google Scholar 

  7. NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, Hébert PC, Heritier S, Heyland DK, McArthur C, McDonald E, Mitchell I, Myburgh JA, Norton R, Potter J, Robinson BG, Ronco JJ (2009) N Engl J Med 360(13):1283–1297

    Article  Google Scholar 

  8. Mizrahi M, Lalazar G, Adar T, Raz I, Ilan Y (2010) Nutr J 9:25

    Article  Google Scholar 

  9. Simkova V, Baumgart K, Vogt J, Wachter U, Weber S, Gröger M, Speit G, Radermacher P, Albuszies G, Barth E (2008) Shock 30(5):578–584

    Article  CAS  Google Scholar 

  10. Stellaard F, Geypens B (1998) Gut 3(Suppl):S2–S6

    Article  Google Scholar 

  11. Braden B, Schäfer F, Caspary WF, Lembcke B (1996) Scand J Gastroenterol 31(5):442–445

    Article  CAS  Google Scholar 

  12. Schadewaldt P, Schommartz B, Wienrich G, Brösicke H, Piolot R, Ziegler D (1997) Clin Chem 43:518–522

    CAS  Google Scholar 

  13. Braden B, Caspary WF, Lembcke B (1999) Z Gastroenterol 37(6):477–481

    CAS  Google Scholar 

  14. Savarino V, Vigneri S, Celle G (1999) Gut 45(Suppl 1):I18–I22

    Article  Google Scholar 

  15. Parente F, Porro GB (2001) Eur J Gastroenterol Hepatol 13(7):803–806

    Article  CAS  Google Scholar 

  16. Kato M, Saito M, Fukuda S, Kato C, Ohara S, Hamada S, Nagashima R, Obara K, Suzuki M, Honda H, Asaka M, Toyota T (2004) J Gastroenterol 39:629–634

    Google Scholar 

  17. Amann A, Spanel P, Smith D (2007) Mini Rev Med Chem 7(2):115–129

    Article  CAS  Google Scholar 

  18. Jordaan M, Laurens JB (2008) J Sep Sci 31(2):329–335

    Article  CAS  Google Scholar 

  19. Patterson SG, Bayer CW, Hendry RJ, Sellers N, Lee KS, Vidakovic B, Mizaikoff B, Gabram-Mendola SGA (2011) Am Surg 77(6):747–751

    Google Scholar 

  20. Vogt JA, Wachter U, Mehring J, Radermacher P, Georgieff M, Fischer H, Hölscher U, Moede M, Fabinski W (2009) J Appl Physiol 107:302–307

    Article  CAS  Google Scholar 

  21. Pont F, Duvillard L, Maugeais C, Athias A, Perségol L, Gambert P, Vergès B (1997) Anal Biochem 248:277–287

    Article  CAS  Google Scholar 

  22. Wong WW, Hachey DL, Zhang S, Clarke LL (1995) Rapid Commun Mass Spectrom 9(11):1007–1011

    Article  CAS  Google Scholar 

  23. Kim SS, Menegazzo N, Young C, Chan J, Carter C, Mizaikoff B (2009) Appl Spectrosc 63:331–337

    Article  CAS  Google Scholar 

  24. Lebovitz HE (1995) Lancet 345(8952):767–772

    Article  CAS  Google Scholar 

  25. Foster MW, Jiang L, Stetkiewicz PT, Risby TH (1996) J Appl Physiol 80:706–710

    CAS  Google Scholar 

  26. Schubert JK, Müller WPE, Benzing A, Geiger K (1998) Intensive Care Med 24:415–421

    Article  CAS  Google Scholar 

  27. Studer SM, Orens JB, Rosas I, Krishnan JA, Cope KA, Yang S, Conte JV, Becker PB, Risby TH (2001) J Heart Lung Transplant 20(11):1158–1166

    Article  CAS  Google Scholar 

  28. Kinoyama M, Nitta H, Watanabe A, Ueda H (2008) J Health Sci 54(4):471–477

    Article  CAS  Google Scholar 

  29. Lee KS, Abouelnasr MF, Bayer CW, Gabram SGA, Mizaikoff B, Rogatko A, Vidakovic B (2009) Adv Appl Stat Sci 2:1–16

    CAS  Google Scholar 

  30. Kim SS, Young C, Vidakovic B, Gabram-Mendola SGA, Bayer CW, Mizaikoff B (2010) IEEE Sens 10:145–158

    Article  CAS  Google Scholar 

  31. Davis C, Frank M, Osner H, Mizaikoff B (2010) IEEE Sens 10:3–6

    Article  Google Scholar 

  32. Mohn J, Werner RA, Buchmann B, Emmenegger L (2007) J Mol Struct 834–836:95–101

    Article  Google Scholar 

  33. Esler MB, Griffith DWT, Wilson SR, Steele LP (2000) Anal Chem 72(1):216–221

    Article  CAS  Google Scholar 

  34. Esler MB, Griffith DWT, Wilson SR, Steele LP (2000) Anal Chem 72(1):206–215

    Article  CAS  Google Scholar 

  35. Kim SS, Young C, Mizaikoff B (2008) Anal Bioanal Chem 390:231–237

    Article  CAS  Google Scholar 

  36. Kraft M, Jakusch M, Karlowatz M, Katzir A, Mizaikoff B (2003) Appl Spectrosc 57:591–599

    Article  CAS  Google Scholar 

  37. Young C, Menegazzo N, Riley AE, Brons CH, DiSanzo FP, Givens JL, Martin JL, Disko MD, Mizaikoff B (2011) Anal Chem (in press)

  38. Berthold HK, Giesen TA, Gouni-Berthold I (2009) Liver Int 29(9):1356–1364

    Article  CAS  Google Scholar 

  39. Sanaka M, Nakada K (2010) J Smooth Muscle Res 46(6):267–280

    Article  Google Scholar 

  40. Thompson BT, Inberg A, Croitoru N, Mizaikoff B (2006) Appl Spectrosc 60(3):266–271

    Article  CAS  Google Scholar 

  41. Charlton C, Temelkuran B, Dellemann G, Mizaikoff B (2005) Appl Phys Lett 86:194102

    Article  Google Scholar 

  42. de Jong S (1993) Chemom Intell Lab Syst 18(3):251–263

    Article  Google Scholar 

  43. Thompson BT, Mizaikoff B (2006) Appl Spectrosc 60(3):272–278

    Article  CAS  Google Scholar 

  44. Vogt F, Mizaikoff B (2004) J Chemom 17:660–665

    Article  Google Scholar 

  45. Vogt F, Steiner H, Booksh K, Mizaikoff B (2004) Appl Spectrosc 58:683–692

    Article  CAS  Google Scholar 

  46. Vogt F, Mizaikoff B (2003) Anal Chem 75:3050–3058

    Article  CAS  Google Scholar 

  47. Charlton C, Mizaikoff B, de Melas F, Inberg A, Croitoru N (2003) IEE Proc Optoelectron 150(4):306–309

    Article  CAS  Google Scholar 

  48. Young C, Kim SS, Luzinova Y, Weida M, Arnone D, Takeuchi E, Day T, Mizaikoff B (2009) Sens Actuators B 140(1):24–28

    Article  Google Scholar 

  49. Young C, Cendejas R, Howard SS, Sanchez-Vaynshteyn W, Hoffman AJ, Franz KJ, Yao Y, Mizaikoff B, Wang X, Fan J, Gmachl CF (2009) Appl Phys Lett 94(9):091109/1–091109/3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the team operating the mouse intensive care unit (MICU) at the Klinik für Anästhesiologie, Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, and especially Sandra Weber for assistance during the mouse breath studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Mizaikoff.

Additional information

Published in the 10th Anniversary Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilk, A., Seichter, F., Kim, SS. et al. Toward the quantification of the 13CO2/12CO2 ratio in exhaled mouse breath with mid-infrared hollow waveguide gas sensors. Anal Bioanal Chem 402, 397–404 (2012). https://doi.org/10.1007/s00216-011-5524-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5524-z

Keywords

Navigation