Skip to main content

Advertisement

Log in

Structural characterization of heparins from different commercial sources

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Seven commercial heparin active pharmaceutical ingredients and one commercial low molecular weight from different manufacturers were characterized with a view profiling their physicochemical properties. All heparins had similar molecular weight properties as determined by polyacrylamide gel electrophoresis (M N, 10–11 kDa; M W, 13–14 kDa; polydispersity (PD), 1.3–1.4) and by size exclusion chromatography (M N, 14–16 kDa; M W, 21–25 kDa; PD, 1.4–1.6). one-dimensional 1H- and 13C-nuclear magnetic resonance (NMR) evaluation of the heparin samples was performed, and peaks were fully assigned using two-dimensional NMR. The percentage of glucosamine residues with 3-O-sulfo groups and the percentage of N-sulfo groups and N-acetyl groups ranged from 5.8–7.9%, 78–82%, to 13–14%, respectively. There was substantial variability observed in the disaccharide composition, as determined by high performance liquid chromatography (HPLC)-mass spectral analysis of heparin lyase I–III digested heparins. Heparin oligosaccharide mapping was performed using HPLC following separate treatments with heparin lyase I, II, and III. These maps were useful in qualitatively and quantitatively identifying structural differences between these heparins. The binding affinities of these heparins to antithrombin III and thrombin were evaluated by using a surface plasmon resonance competitive binding assay. This study provides the physicochemical and activity characterization necessary for the appropriate design and synthesis of a generic bioengineered heparin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Linhardt RJ (2003) Heparin: structure and activity. J Med Chem 46(13):2551–2554

    Article  CAS  Google Scholar 

  2. Weintraub AY, Sheiner E (2007) Anticoagulant therapy and thromboprophylaxis in patients with thrombophilia. Arch Gynecol Obstet 276(6):567–571

    Article  CAS  Google Scholar 

  3. Bick RL, Frenkel EP, Walenga J, Fareed J, Hoppensteadt DA (2005) Unfractionated heparin, low molecular weight heparins, and pentasaccharide: basic mechanism of actions, pharmacology, and clinical use. Hematol Oncol Clin North Am 19(1):1–51

    Article  Google Scholar 

  4. Nader HB, Dietrich CP (1989) Natural occurrence and possible biological role of heparin. In: Lane DA, Lindahl U (eds) Heparin chemical and biological properties, clinical applications. CRC, Boca Raton, pp 115–133

    Google Scholar 

  5. Lindahl U, Backstrom G, Thunberg L, Leder IG (1980) Evidence for a 3-O-sulfated d-glucosamine residue in the antithrombin-binding sequence of heparin. Proc Natl Acad Sci U S A 77(11):6551–6555

    Article  CAS  Google Scholar 

  6. Schonberger LB (1998) New variant Creuzfeldt-Jakob disease and bovine spongiform encephalopathy. Infect Disease Clinics North Am 12(1):111–121

    Article  CAS  Google Scholar 

  7. Cho JG, Dee SA (2006) Porcine reproductive and respiratory syndrome virus. Theriogenology 66(3):655–662

    Article  Google Scholar 

  8. Guerrini M, Beccati D, Shriver Z, Naggi AM, Bisio A, Capila I, Lansing J, Guglieri S, Fraser B, Al-Hakim A, Gunay S, Viswanathan K, Zhang Z, Robinson L, Venkataraman G, Buhse L, Nasr M, Woodcock J, Langer R, Linhardt RJ, Casu B, Torri G, Sasisekharan R (2008) Oversulfated chondroitin sulfate is a major contaminant in heparin associated with adverse clinical events. Nat Biotechnol 26(6):669–775

    Article  CAS  Google Scholar 

  9. Kishimoto TK, Viswanathan K, Ganguly T, Elankumaran S, Smith S et al (2008) Contaminated heparin associated with adverse clinical events and activation of the contact system. N Engl J Med 358(23):2457–2467

    Article  CAS  Google Scholar 

  10. Lindahl U, Feingold DS, Roden L (1986) Biosynthesis of heparin. Trends Biochem Sci 11:221–225

    Article  CAS  Google Scholar 

  11. Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    Article  CAS  Google Scholar 

  12. Chen J, Jones CL, Liu J (2007) Using an enzymatic combinatorial approach to identify anticoagulant heparan sulfate structures. Chem Biol 14(9):986–993

    Article  CAS  Google Scholar 

  13. Edavettal SC, Lee KA, Negishi M, Linhardt RJ, Liu J, Pedersen LC (2004) Crystal structure and mutational analysis of heparan sulfate 3-O-sulfotransferase isoform 1. J Biol Chem 279(24):25789–25797

    Article  CAS  Google Scholar 

  14. Xu D, Moon A, Song D, Pedersen LC, Liu J (2008) Engineering sulfotransferases to modify heparan sulfate. Nat Chem Biol 4(3):200–202

    Article  CAS  Google Scholar 

  15. Zhang Z, McCallum SA, Xie J, Nieto L, Corzana F, Jiménez-Barbero J, Chen M, Liu J, Linhardt RJ (2008) Solution structures of chemoenzymatically synthesized heparin and its precursors. J Am Chem Soc 130(39):12998–13007

    Article  CAS  Google Scholar 

  16. Liu R, Xu Y, Chen M, Weïwer M, Bridges A, DeAngelis PL, Zhang Q, Linhardt RJ, Liu J (2010) Chemoenzymatic design of heparan sulfate oligosaccharides. J Biol Chem 285(44):34240–34249

    Article  CAS  Google Scholar 

  17. Edens RE, Al-Hakim A, Weiler JM, Rethwisch DG, Fareed J, Linhardt RJ (1992) Gradient polyacrylamide gel electrophoresis for determination of the molecular weights of heparin preparations and low-molecular-weight heparin derivatives. J Pharm Sci 81(8):823–827

    Article  CAS  Google Scholar 

  18. Wang Z, Yang B, Zhang Z, Ly M, Takieddin M, Mousa S, Liu J, Dordick JS, Linhardt RJ (2011) Control of heparosan N—deacetylation leads to an improved bioengineering heparin. Appl Microbiol Biotechnol 91(1):91–99

    Article  CAS  Google Scholar 

  19. Zhang Z, Xie J, Liu H, Liu J, Linhardt RJ (2009) Quantitification of heparan sulfate and heparin disaccharides using ion pairing, reverse-phase, micro-flow, high performance liquid chromatography coupled with electrospray ionization trap mass spectrometry. Anal Chem 81(11):4349–4355

    Article  CAS  Google Scholar 

  20. Xiao Z, Tappen BR, Ly M, Zhao W, Canova LP, Guan H, Linhardt RJ (2011) Heparin mapping using heparin lyases and the generation of a novel low molecular weight heparin. Med Chem 54(2):603–610

    Article  CAS  Google Scholar 

  21. Guerrini M, Zhang Z, Shriver Z, Naggi A, Masuko S, Langer R, Casu B, Linhardt RJ, Torri G, Sasisekharan R (2009) Orthogonal analytical approaches to detect potential contaminants in heparin. Proc Nat Acad Sci U S A 106(40):16956–16961

    Article  CAS  Google Scholar 

  22. Beaudet JM, Weyers A, Solakyildirim K, Yang B, Takieddin M, Mousa S, Zhang F, Linhardt RJ (2011) Affect of autoclave sterilization on the activity and structure of formulated heparin. J Pharm Sci 100(8):3396–3404

    Article  CAS  Google Scholar 

  23. Liu Z, Xiao Z, Masuko S, Zhao W, Sterner E, Bansal V, Fareed J, Dordick JS, Zhang F, Linhardt RJ (2011) Mass balance analysis of contaminated heparin product. Anal Biochem 408(1):147–156

    Article  Google Scholar 

  24. Guo X, Condra M, Kimura K, Berth G, Dautzenberg H, Dubin PL (2003) Determination of molecular weight of heparin by size exclusion chromatography with universal calibration. Anal Biochem 312(1):33–39

    Article  CAS  Google Scholar 

  25. Bertini S, Bisio A, Torri G, Bensi D, Terbojevich M (2005) Molecular weight determination of heparin and dermatan sulfate by size exclusion chromatography with a triple detector array. Biomacromolec 6(1):168–173

    Article  Google Scholar 

  26. Linhardt RJ (1994) In: Varki A (ed) Current protocols in molecular biology: analysis of glycoconjugates. Wiley-Interscience, Hoboken, pp 17.13.17–17.13.32

    Google Scholar 

  27. Merchant ZM, Kim YS, Rice KG, Linhardt RJ (1985) Structure of heparin-derived tetrasaccharides. Biochem J 229(2):369–377

    CAS  Google Scholar 

  28. Yang B, Weyers A, Baik JY, Sterner E, Sharfstein S, Mousa SA, Zhang F, Dordick JS, Linhardt RJ (2011) Ultraperformance ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for heparin disaccharide analysis. Anal Biochem 415(1):59–66

    Article  CAS  Google Scholar 

  29. Linhardt RJ, Loganathan D, Al-Hakim A, Wang HM, Walenga JM, Hoppensteadt D, Fareed J (1990) Oligosaccharide mapping of low molecular weight heparins: structure and activity differences. J Med Chem 33(6):1639–1645

    Article  CAS  Google Scholar 

  30. Linhardt RJ, Kerns RJ, Vlahov IR (1996) In: Yalpani M (ed) Heparin and heparin oligosaccharides: preparation, analysis, applications and biological activities, biochemical functions and biotechnology of natural and artificial polymers. ATL Press, Science Publishers, Mt. Prospect, pp 46–62

    Google Scholar 

  31. Linhardt RJ (1991) Heparin: an important drug enters its seventh decade. Chem Ind 2:45–50

    Google Scholar 

  32. Wang Z, Ly M, Zhang F, Zhong W, Suen A, Dordick JS, Linhardt RJ (2010) E. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor. Biotechnol Bioengin 107(6):968–977

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants funded by the National Institutes of Health HL101721 and HL096972 (RJL) and the Bioengineered Heparin Consortium.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuming Zhang or Robert J. Linhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Yang, B., Ly, M. et al. Structural characterization of heparins from different commercial sources. Anal Bioanal Chem 401, 2793–2803 (2011). https://doi.org/10.1007/s00216-011-5367-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5367-7

Keywords

Navigation